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Abstract

A discrete-time financial market model is considered with a se-

quence of investors whose preferences are described by concave strictly

increasing functions defined on the positive axis. Under suitable con-

ditions we show that, whenever their absolute risk-aversion tends to

infinity, the respective utility indifference prices of a bounded contin-

gent claim converge to its superreplication price.

Keywords: utility indifference price, superreplication price, convergence,
utility maximization, risk aversion.

1 Introduction

In the present paper a sequence of investors is considered. Preferences of
investor n are expressed via the choice of his or her concave strictly increasing
utility function Un. We treat the case dom(Un) = (0,∞).
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The utility indifference price (also called Hodges-Neuberger price or reser-
vation price) for the seller of a contingent claim has been introduced by
Hodges and Neuberger (1989). It is the minimal amount a seller should add
to his or her initial wealth so as to reach an expected utility when delivering
the claim which is greater than or equal to the one he or she would have
obtained trading in the basic assets only. The superreplication price is a
utility free concept. It is the minimal initial wealth needed for hedging the
claim without risk.

We show that (under appropriate technical conditions) the utility indif-
ference prices of a bounded claim converge to its superreplication price when
the absolute risk-aversion −U ′′

n/U ′
n of the respective agents tends to infinity.

Up to now, this result was known essentially for exponential utility func-
tions. See, among others and in various contexts, El Karoui and Rouge
(2000), Bouchard (2000), Bouchard et al. (2001), Collin-Dufresne and Hugon-
nier (2004) and Delbaen et al. (2002). Note that the particular techniques
for exponential functions can not be used for general utility functions. More-
over, we do not rely on the duality machinery and treat directly the primal
problem.

Convergence results can also be found in Jouini and Kallal (2001), for
another concept of utility price in a finite probability space and in Carassus
and Rásonyi (2005a) for reservation and Davis prices (in the same framework
as the present paper). More precisely, the convergence of those prices was
shown when Un tend to some limiting utility function U∞. This is connected
with the main result of this paper noting that the superreplication price can
be considered as the utility indifference price for the function

U∞(y) := −∞, y < x, U∞(y) := 0, y ≥ x,

where x is the agent’s initial capital, see section 3 for details. But we can
neither apply directly the results of Carassus and Rásonyi (2005a) nor the
same techniques since they are based on smoothness of U∞.

2 Definitions, assumptions and results

Let (Ω,F , (Ft)0≤t≤T , P ) be a discrete-time filtered probability space with
time horizon T ∈ N. We assume that F0 coincides with the family of P -zero
sets. Let {St, 0 ≤ t ≤ T} be a d-dimensional adapted process representing
the discounted (by some numéraire) price of d securities in a given economy.
The notation ∆St := St − St−1 will often be used. Denote by Dt(ω) the
smallest affine hyperplane containing the support of the (regular) conditional
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distribution of ∆St with respect to Ft−1, see Proposition 8.1 of Rásonyi and
Stettner (2005a) for more information about the random set Dt.

Trading strategies are given by d-dimensional processes {φt, 1 ≤ t ≤
T} which are supposed to be predictable (i.e. φt is Ft−1-measurable). The
class of all such strategies is denoted by Φ. Denote by L∞, L∞

+ the sets
of bounded, nonnegative bounded random variables, respectively, equipped
with the supremum norm ‖ · ‖∞. Trading is assumed to be self-financing, so
the value process of a portfolio φ ∈ Φ is

V z,φ
t := z +

t
∑

j=1

〈φj, ∆Sj〉,

where z is the initial capital of the agent in consideration and 〈·, ·〉 denotes
scalar product in R

d.
The following absence of arbitrage condition is standard:

(NA) : ∀φ ∈ Φ (V 0,φ
T ≥ 0 a.s. ⇒ V 0,φ

T = 0 a.s.).

However, we need to assume a certain strengthening of the above concept
hence an alternative characterization is provided in the Proposition below.
Let Ξt denote the set of Ft-measurable d-dimensional random variables,

Ξ̃t := {ξ ∈ Ξt : ξ ∈ Dt+1 a.s., |ξ| = 1 on {Dt+1 6= {0}}}.

Proposition 2.1 (NA) holds iff there exist Ft-measurable random variables
βt, 0 ≤ t ≤ T − 1 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ, ∆St+1〉 < −βt|Ft) > 0 a.s. on {Dt+1 6= {0}}. (1)

Proof. The direction (NA) ⇒ (1) is Proposition 3.3 of Rásonyi and Stettner
(2005a). The other direction is clear from the implication (g) ⇒ (a) in
Theorem 3 of Jacod and Shiryaev (1998). 2

The following condition is called “uniform no-arbitrage” and was intro-
duced by Schäl (2000).

Assumption 2.2 There exists a constant β > 0 such that for 0 ≤ t ≤ T −1

ess. inf
ξ∈Ξ̃t

P (〈ξ, ∆St+1〉 < −β|Ft) > 0 a.s. on {Dt+1 6= {0}}.

Let G ∈ L∞
+ be a random variable which will be interpreted as the payoff

of some derivative security at time T . Now the concept of superreplication
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price is formally introduced as the minimal initial wealth needed for hedging
without risk the given contingent claim:

π(G) := inf{z ∈ R : V z,φ
T ≥ G for some φ ∈ Φ}.

We refer to Karatzas and Cvitanić (1993), El Karoui and Quenez (1995),
Kramkov (1996) and Föllmer and Kabanov (1998) for more information
about this notion.

We go on incorporating a sequence of agents in our model with con-
cave utility functions Un. The functions rn below express the absolute risk-
aversion of the respective agents.

Assumption 2.3 Suppose that Un : (0,∞) → R, n ∈ N is a sequence of
concave strictly increasing twice continuously differentiable functions such
that

∀x ∈ (0,∞) rn(x) := −
U ′′

n(x)

U ′
n(x)

→ ∞, n → ∞.

We extend each Un to [0,∞) by continuity.

Example 2.4 Typical examples are the sequences Un(x) = −e−γnx, x > 0
where 0 < γn and γn → ∞ or the utility functions with derivatives U ′

n(x) =
e−γnx2

, x > 0 where 0 < γn and γn → ∞.

Define for each x > π(G), the set A(G, x) of admissible strategies:

A(G, x) := {φ ∈ Φ : V x,φ
T ≥ G a.s.}.

Define the supremum of expected utility at the terminal date when de-
livering claim G, starting from initial wealth x ∈ (π(G),∞) :

un(G, x) := sup
φ∈A(G,x)

EUn(V x,φ
T − G), (2)

where the expectations exist if S is bounded and Assumption 2.2 holds, see
Lemma 3.2 below.

Remark 2.5 It would also be possible to extend Un on the negative half-line
as −∞. In this case one may work without the admissibility condition on
strategies and with arbitrary initial wealth.

Definition 2.6 The utility indifference price pn(G, x) is defined as

pn(G, x) = inf{z ∈ R : un(G, x + z) ≥ un(0, x)}.
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We wish to find conditions on S and Un which guarantee that pn(G, x)
tends to π(G) whenever Assumption 2.3 holds. Our main result is the fol-
lowing Theorem, see also Remark 3.6 for possible generalizations.

Theorem 2.7 Suppose that x ∈ (0,∞), S is bounded, Assumptions 2.2 and
2.3 hold. Then the utility indifference prices pn(G, x) are well-defined and
converge to π(G) as n → ∞.

3 Proof of the main result

Lemma 3.1 Let x > π(G). Suppose that S is bounded and Assumption 2.2
holds. Take any strategy φ ∈ A(G, x) satisfying φt ∈ Dt, 1 ≤ t ≤ T − 1.
There exist increasing functions Mt(x) ≥ 0 such that

V x,φ
t ≤ Mt(x).

Proof. For t = 0 take M0(x) := x. Suppose that the statement has been
shown up to t − 1. We claim that

|φt| ≤
V x,φ

t−1

β
. (3)

Indeed, define

A :=

{

|φt| >
V x,φ

t−1

β

}

∈ Ft−1, B :=

{

〈
φt

|φt|
, ∆St〉 < −β

}

.

Clearly, {V x,φ
t < 0} ⊃ A ∩ B and

P (A ∩ B) = E[E[IA∩B|Ft−1]] = E[IA[E(IB|Ft−1)]].

By Assumption 2.2, P (B|Ft−1) > 0, thus P (A) > 0 would imply that
P (V x,φ

t < 0) > 0. But as V x,φ
T ≥ G ≥ 0 a.s., the no-arbitrage condition

(NA) implies that V x,φ
t ≥ 0 a.s. for all t. This contradiction shows that (3)

holds.
Thus by the induction hypothesis

V x,φ
t ≤ Mt−1(x) + ‖∆St‖∞Mt−1(x)/β =: Mt(x),

which defines a suitable Mt(x). 2
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Lemma 3.2 Let x > π(G). If S is bounded and Assumption 2.2 holds then
un(G, x) is well-defined, finite and

un(G, x) = sup
φ∈A(G,x), φt∈Dt

EUn(V x,φ
T − G).

Proof. Take some strategy φ̃ ∈ A(G, x) such that V x,φ̃
T ≥ G + ε for some

ε > 0. Then
un(G, x) ≥ Un(ε) > −∞.

Let φ ∈ A(G, x) and φ̂t(ω) be the orthogonal projection of φt(ω) on Dt(ω).
From Lemma 3.1,

Un(V x,φ̂
T − G) ≤ Un(MT (x)).

By definition of Dt,
〈φt, ∆St〉 = 〈φ̂t, ∆St〉 a.s.

and thus

un(G, x) = sup
φ∈A(G,x)

EUn(V x,φ
T − G) = sup

φ∈A(G,x)

EUn(V x,φ̂
T − G) < ∞,

and the statements are proved. 2

Denote by L0 the set of all real-valued random variables on (Ω,F , P )
equipped with the topology of convergence in probability. The notation L0

+

stands for the set of nonnegative random variables. Define for z ∈ R

Kz := {V z,φ
T : φ ∈ Φ}.

We recall the following fundamental fact, see Kabanov and Stricker (2001)
or Schachermayer (1992) for a proof.

Theorem 3.3 Under (NA), the set Kz − L0
+ is closed in probability. 2

Lemma 3.4 Let B ∈ L0 such that B /∈ Kz − L0
+. Then there exists ε > 0

such that
inf

θ∈Kz

P (θ ≤ B − ε) ≥ ε.

Proof. Suppose that the statement is false. Then for all n there is θn ∈ Kz

such that
P (θn ≤ B − 1/n) ≤ 1/n,

hence for κn := [θn − (B − 1/n)]I{θn>B−1/n} ∈ L0
+:

P (θn − κn = B − 1/n) ≥ 1 − 1/n.

This implies θn − κn → B in probability, hence B ∈ Kz − L0
+ = Kz − L0

+, a
contradiction. 2
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Lemma 3.5 Suppose that Un, n ∈ N satisfy Assumption 2.3 as well as

∀n ∈ N Un(x) = 0, U ′
n(x) = 1,

for some fixed x ∈ (0,∞). Then

∀y < x Un(y) → −∞, n → ∞, ∀y ≥ x Un(y) → 0, n → ∞.

Proof. First take y < x. As U ′
n is decreasing, U ′

n(u) ≥ U ′
n(x) = 1, for u ≤ x,

hence rn(u) ≤ −U ′′
n(u). Necessarily

U ′
n(y) = U ′

n(x) −

∫ x

y

U ′′
n(u)du ≥ 1 +

∫ x

y

rn(u)du → ∞,

as n → ∞, by the Fatou-lemma. Also

Un(y) = Un(x) −

∫ x

y

U ′
n(u)du → −∞,

by the same reasoning, using the previous convergence observation.
Now for any y > x we claim that U ′

n(y) → 0. If this were not the case,
along a subsequence nk, for all k

U ′
nk

(y) ≥ α > 0.

Then by monotonicity U ′
nk

(u) ≥ α, for all u ≤ y, so rn(u) → ∞ implies that
−U ′′

nk
(u) → ∞, k → ∞, u ≤ y. Then necessarily

0 ≤ U ′
nk

(y) = U ′
nk

(x) +

∫ y

x

U ′′
nk

(u)du = 1 +

∫ y

x

U ′′
nk

(u)du → −∞,

a contradiction proving the second assertion of this Lemma. 2

Proof of Theorem 2.7. Fix x > 0. As we have already pointed out in Lemma
3.2, un(G, x) is well-defined and finite.

Notice that Assumption 2.3 remains true if we replace each Un by αnUn +
βn for some αn > 0, βn ∈ R. Also, the utility indifference prices defined by
these new functions are the same as the ones defined by the original Un.
Hence by choosing αn := 1/U ′

n(x) and βn := −Un(x)/U ′
n(x), we may and will

suppose that for all n ∈ N

Un(x) = 0, U ′
n(x) = 1. (4)

Fix π(G) < y < x + π(G). Then

x + G /∈ Ky − L0
+,
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by the definition of the superreplication price. Take 0 < ε given by Lemma
3.4 appplied with B := x + G and z = y. Notice that the function MT (·)
figuring in Lemma 3.1 does not depend on the particular choice of the strategy
φ and hence can be chosen uniformly for all φ ∈ A(G, y) such that φt ∈ Dt

for all t. For such a φ, define the sets

Aφ := {ω ∈ Ω : V y,φ
T (ω) ≤ x + G(ω) − ε}.

It follows from Lemma 3.4 that P (Aφ) ≥ ε. We get

EUn(V y,φ
T − G) ≤ EIAφ

Un(x − ε) + EIAC
φ
Un(MT (y))

≤ P (Aφ)Un(x − ε) + Un(MT (y) + x)P (AC
φ )

≤ εUn(x − ε) + Un(MT (y) + x). (5)

For the last inequality we used the fact that Un(x− ε) ≤ Un(x) = 0 and that
Un(z) ≥ 0 for all z ≥ x. Thus, by Lemma 3.2

un(G, y) ≤ εUn(x − ε) + Un(MT (y) + x) → −∞, (6)

by Lemma 3.5.
We also see from the definition of un(0, x) that

lim inf
n→∞

un(0, x) ≥ lim inf
n→∞

Un(x) = 0. (7)

One may easily check that

pn(G, x) ≤ π(G). (8)

Indeed, for any δ > 0 we may take a strategy φ̂(δ) ∈ A(G, π(G) + δ) such
that

V
π(G)+δ,φ̂(δ)
T ≥ G.

Then, as Un is non decreasing,

un(0, x) ≤ sup
φ∈A(0,x)

EUn(V
x+π(G)+δ,φ+φ̂(δ)
T − G)

≤ sup
φ∈A(G,x+π(G)+δ)

EUn(V
x+π(G)+δ,φ
T − G) = un(G, x + π(G) + δ),

so by the definition of the utility indifference price pn(G, x) ≤ π(G) + δ and
(8) follows by letting δ → 0.

Now it remains to prove

lim inf
n→∞

pn(G, x) ≥ π(G). (9)
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Suppose that this fails, i.e. for some x > η > 0 and a subsequence nk

pnk
(G, x) ≤ π(G) − η

holds, for all k ∈ N. Again, by Definition 2.6,

unk
(G, x + π(G) − η) ≥ unk

(0, x),

the left-hand side tends to −∞ by (6) applied to y = x + π(G) − η and the
liminf of the right-hand side is nonnegative by (7), a contradiction proving
(9) and hence the Theorem. 2

Remark 3.6 It is possible to extend Theorem 2.7 to certain unbounded price
processes and relax Assumption 2.2, too. Define W as the set of random
variables with finite moments of all orders. Suppose ∆St ∈ W, 1/βt−1 ∈
W , 1 ≤ t ≤ T and Assumption 2.3. Then pn(G, x) tends to π(G). Lemma
3.1 can be shown with random variables Mt(x) ∈ W instead of constants.
Lemma 3.2 also follows easily. Then the same arguments work, just like in
(5) we get

EUn(V x,φ
T − G) ≤ εUn(x − ε) + EIAC

φ
Un(MT (y) + x).

Here

IAC
φ
Un(x + MT (y)) ≤ IAC

φ
[Un(x) + MT (y)U ′

n(x)] ≤ MT (y),

and this is integrable (in fact, lies in W), hence

un(G, y) ≤ εUn(x − ε) + EMT (y)

and un(G, y) → −∞ for π(G) < y < π(G) + x. The rest of the proof is
identical.

4 Conclusion

It is well-known that exponential utility prices converge to superreplication
price when agents’ risk aversion tends to infinity. We have generalized this
result to concave, strictly increasing, twice differentiable utility functions
with domain (0,∞). What happens when the domain is the whole real axis?
The same kind of results can be obtained but this requires different techniques
and will be addressed elsewhere, see Carassus and Rásonyi (2005b).

Another natural question is the convergence of the optimal strategies to
some superreplication strategy. This is false in general, see the example of
Cheridito and Summer (2003). In the setting of the present paper, all consid-
ered strategies are superhedging strategies by the definition of the admissible
set A(G, x). In particular, the optimal strategies, which exist by Rásonyi and
Stettner (2005b), are superreplicating ones.
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