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1 Introduction 
Numerical simulations of spatial-temporal chaotic systems require huge digital com-

puting power, but still that is the usual analysis tool because it offers the advantage of 
easy experimentation via programming. Till now, the physically implemented chaotic cir-
cuits were “hard-coded”.  The new analogic cellular computing paradigm [1][7][18] places 
the spatial-temporal dynamics into array computer architecture. Using the new ACE4K 
test-bed [1]–[3] it is possible for the first time to make programmable real-time experi-
ments and uncover new complex dynamic behaviors in the Cellular Nonlinear Network. 

The Cellular Nonlinear Network [4]–[8] is a locally coupled 2-3 dimensional array of 
n-th order nonlinear dynamical systems. The elements of the array are called cells. The 
couplings are called templates. They are written usually as a matrix, their elements repre-
sent the strength of the coupling between the neighboring cells. The output (or state) of 
the system is considered as a two dimensional image where each cell corresponds to one 
pixel of the image. The input of the CNN is an image which can also be considered as a 
constant bias to each cell. An image of the outputs of the cells at a given time instant may 
characterize the actual state of the whole system. 

The qualitative theory of nonsymmetric feedback (A) templates had been first ex-
posed in [16].  Later, several papers have studied the operation of the CNN with non-
symmetric or sign-antisymmetric templates [9]–[11]. They described some necessary con-
ditions under which propagation effects occur or the solution is periodic. Other works 
investigated the pattern formation properties of the CNN [12] or studied the complex 
behavior [13][14][15] of the CNN. However, only a few works dealt with the case when 
there is a constant input [17]. With constant input, we are able to localize the propagation 
effect into a certain region according to the extent of the input pattern. By using a con-
stant input as a seed, different shapes can be generated depending on the properties of 
the template. 

In this paper, besides (i) introducing the new experimental tool, a real-time pro-
grammable, spatial-temporal bifurcation test-bed [1][2][18][19], we show (ii) new spatial-
temporal patterns. In addition, we show (iii) how to use these exotic patterns for mor-
phological detection. In the following we present an experimental analysis of a simple an-
tisymmetric template in that case when we add only one extra coupling bellow the central 
element. We will introduce the basic template class and show how the behavior of the 
CNN changes from stable to chaotic states at different values of that coupling. Figure 1 
shows two basic pattern classes that are generated by two different values of the key 
template element (the extra coupling is greater or less than zero). Throughout this paper, 
in the images black color means “+1” and white color means “-1”. 

   
 (a) (b) (c) 

Figure 1: Typical pattern classes. (a) The input and initial 
state, (b) snapshot of the output when the extra coupling is 
greater than zero, (c) snapshot of the output when the extra 
coupling is less than zero  (Chip measurements) 

Section 2 describes the CNN model of the simulation and of the chip. Section 3 presents 
the basic pattern classes. Section 4 and Section 5 describes the effect of the self-feedback and of 
the input and initial state respectively. Section 6 presents an example of a 1D CNN with 
first order cells that exhibits chaotic behavior. Section 7 shows some additional examples of 
propagating pattern classes. 
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2 The Programmable CNN Model  
Throughout this analysis we will only consider CNNs with space invariant templates i.e. 

the same template matrix describes the local couplings for each cell. In the model, (Equa-
tion 1) we have a nonzero input u that adds a constant value to each cell. This model is 
implemented as the main elementary instruction of the ACE4k chip, an implementation 
of the CNN Universal Machine (CNN-UM) [7] architecture. Its stored programmability, 
via software (in the ALADDIN System [19]) makes it a new and ideal tool for us, as a 
test bed. 

2.1 Simulation 
The mathematical model of the simulation of the basic CNN dynamics is the following: 

∑ ∑
∈ ∈

+++−=
r rSkl Skl

klklklijklijij zuB(t)xA(t))g(x(t)x ,D

 
(1) 

 g(x) 

x

-1 1 

 
i Sr =2 

xij

 j

Sr =1 

 
(a) (b) 

Figure 2: (a) Hard nonlinearity g(.), (b) The interpretation of Sr in the CNN 
array for r=1 (3××××3). 

We use a so called full range model [8]. In Equation 1, xi,j denotes the state, Ak,l is the 
feedback template matrix, Bkl is the control template matrix, it describes the effect of the 
constant input ukl , and z is the offset or bias. The integration method throughout the 
simulation was an implicit Euler method. In all cases the boundary cells are constant, except 
if explicitly noted differently.  

2.2 Programmable chip measurements – the experimental test bed 
The chip experiments had been made on the new ACE4k test bed. The ACE4k chip 

is an analogic cellular microprocessor [18]. The model of the CNN-instruction is de-
scribed by Equation 2: 
 

∑ ∑
∈ ∈

+++−=
r rSkl Skl

klklklijklijij zuB(t)xA(t))(xg(t)x ,'D (2) 

 g’(x)
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Figure 3: “Less hard” nonlinearity g’(.) 
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On the chip, the ideal nonlinearity (Figure 2a) is approximated by a “less hard” nonlinear-
ity (Figure 3). 
When the state variable xij(t) reaches the saturation limits (+1, –1), the g’(x) term works 
against the increase or decrease and keeps the value of the state within the limits.  

3 The effect of vertical coupling 
In the following we will show how extra coupling added to an uncoupled template 

changes the behavior of the system. Let us consider the following one-dimensional 
“CCD-like” template of which solution is periodic (see Figure 4). 
 
 

 
Template 1: 
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000

000
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000
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=
















−= zBA  

 
Figure 4: The time evolution for Template 1 and snapshots of the state. Observe that the propaga-
tion decays spatially after a few pixels, but the oscillation remains. The initial state is the same as 
the input. (Simulated results, size: 41××××23)  

During the time transient, cells along the right hand side border of the constant input 
pattern act like oscillators. The oscillators are only coupled horizontally and the rows op-
erate independently. The oscillation propagates to the right along the row starting from 
the triggering constant input (black pixels), and depending on the template values, it 
stops (dies) after a certain distance or endures until the edge of the array.  
Template 2 shows the general form of the nonsymmetric template with an added vertical 
coupling. When sq < 0 the template is called sign-antisymmetric. This is shown in Template 
3 with s = – q. By introducing an extra template element r below of the central one (de-
noted by p) the homogeneous propagation and oscillation disappears. We get some struc-
tured pattern. The character of the structure depends on the sign of the key template ele-
ment r. (See Figure 1 and Table 1.) 
 

Template 2: 
general form 

s ≠ q 
zb

r
qps =
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= zBA
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000
 

Template 3: 
antisymmetric 

s = – q 
zb

r
sps =

















=
















−= zBA
000
00
000

00

000

 
Coupling sign  Propagating pattern Snapshots 

positive:   r > 0 solid inner part, oscillating 
border cells  

negative:   r < 0 texture like oscillating pat-
tern  

Table 1: Categorization of templates containing one extra cou-
pling. The effect of the sign on the shape of the pattern. 
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Different types of propagation occur according to the sign of the coupling r. Local 
oscillators operate in each row due to the antisymmetric property (s = – q).  

3.1 Positive vertical coupling (r > 0) 
If the value is positive, a pattern is formed which is solid inside, however its right 

border is oscillating. At the beginning, the input pattern propagates oscillating to the 
right until a certain extent, and then the global propagation stops and cells along the right 
border continue oscillating (at certain parameter setting the left border can also oscillate 
but not propagates). Typical snapshot of the pattern is shown in Figure 5, its correspond-
ing template is Template 4. The ruffles along the right border of the pattern move up and 
right during the evolution – it is a periodic solution in time and space (See Figure 8). 
Figure 6 shows the result of the chip measurement and its corresponding template, Tem-
plate 5. The exact values of the chip templates are slightly different from the template of 
the simulation, however the phenomenon can be reproduced quite well. 

Template 4:
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Figure 5: The input & initial state and snapshot 
of the output pattern if the coupling is positive. 
(Simulated result) 

Template 5:
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Figure 6: The input & initial state and snapshot 
of the output pattern if the coupling is positive. 
(Chip measurement) 

Along the right border of the shadow-like structure local oscillators operate which 
are coupled horizontally to the nearest neighbor and to the cell below of them  (see 
Figure 7). Generally, there is no oscillation inside of the structure, only along its border. 
These local oscillations together form the main pattern which looks like the cross-section 
of waves on the surface of the water (see Figure 8). 

 

oscillating cells 

constant input propagation

first row

second row 

 
Figure 7: Structure of the pattern when p is greater than zero. 
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Figure 8: Time evolution of the pattern when p is positive. Snapshots of the state (simulated re-
sults, size: 41××××23). The last snapshot shows the largest spatial extent of the generated pattern. 
There is no global propagation after this moment, only the ruffles travel along the right border of 
the pattern.  

3.2 Negative vertical coupling (r < 0) 
When the vertical coupling is negative a texture-like oscillating pattern is formed. 

This pattern has a unique structure. It consists of propagating horizontal line segments 
which spread to the right (See Figure 11). The spatial extent of the propagation to the 
right direction changes as we change the parameters but the main characteristics remain 
the same. 

Template 6:
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Figure 9: The input & initial state and snapshot of 
the output pattern if the vertical coupling is nega-
tive. (Simulated result) 

Template 7:
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Figure 10: The input & initial state and snapshot of 
the output pattern if the vertical coupling is nega-
tive. (Chip measurement) 

Let us define the bottommost row of the input pattern (black pixels) as the “first” 
row (Figure 12). The template produces a straight line (a shadow) for this row over a 
large domain of parameters values. The cells in this row have really simple dynamics: they 
are stable (saturated black pixels). The straight line serves as a constant driving for the 
cells in the next – “second” – row upward. The “second” row does not produce propa-
gating pattern. Instead, we find a few neighboring oscillating cells. The number of oscil-
lating cells depends on the other elements of the template. The third row also gives rise 
to periodic signal but with a different waveform and propagating pattern. 

 

 
Figure 11: Time evolution of the pattern when r is negative. Snapshots of the state (simulated re-
sults, size: 41××××23). 
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first row, 
constant black 
line 

oscillating cells

constant input propagation

second row, no 
propagation 

 
Figure 12: The structure of the propagating pattern. 

4 The effect of the central template element 
If we increase the central element (self feedback) then the generated pattern gets 

more and more irregular and it can become chaotic. 
Based on the simulations and the measurements it is possible to construct an approxi-
mate partition of the r-p space. Figure 13 shows the supposed different dynamic regions 
of the system parameterized by r and p of Template 8. 
 

Template 8:
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4.1 Simulation 
The r-p plane can be divided into stable-periodic-chaotic sub-regions (Figure 13). 

   

r

p

0

stable

stable 

stable 

CCD
Input picture 

stable 

chaotic chaotic

chaotic? periodic 
quasiperiodic

stable

 
Figure 13: Partitioning of the r-p parameter space. The input & initial state is shown in the 
upper left corner. It is a three-pixel wide bar. The pictures in the different regions show few 
typical snapshots of outputs belonging to that region.  

Stable region 
Around the periodic and chaotic region there is a stable region with various stable pat-
terns. When p is high the effect of the input becomes dominant and therefore the out-
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put is almost the same as the input. When p is low (negative) the character of the sys-
tem is diffusive. Between the two extreme values of p is a region where the effect of the 
input is less significant. Therefore the patterns are dominantly one-dimensional or 
there is no pattern at all. 

Periodic region 
The patterns propagate periodically and they have the form of solid wave-like and texture, 
as it is described previously in Section 3.  

Chaotic region 
If p is large enough, the system can become chaotic. However, chaotic behavior may 
occur at smaller p, when r is less than zero. The reason for this can be that the constant 
black line (the first row) becomes oscillating (See Figure 13).  

4.1.1. Positive coupling (r > 0) 
This section contains results of simulations when r is greater than zero. Observe the 

transition from the simpler to the more complex dynamics. Figures 15-20 show the snap-
shot of the generated pattern, the time evolution of one sampled state variable, the 
power spectrum of that variable and the trajectory of the sampled cell and its neighbor 
cell. The captions contain the actual value of parameter p. (p = [0.3 .. 0.87], r = 0.3) 

Template 9:

 

1.0
000
02.10
000

03.00
1.11.1

000
=

















=
















−= zp BA
 

 

constant input
pattern 

propagation

first row 

second row 

sampled cells (x1,x2)

 
Figure 14: In the first row, to the right from the edge of the black part of the constant input (denoted by blue 
striped boxes) the second and third cells were sampled as shown in the figure. 
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Figure 15: Snapshot of the output, the time evolution of one cell from the first row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.3). 
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Figure 16: Snapshot of the output, the time evolution of one cell from the first row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.5). 
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Figure 17: Snapshot of the output, the time evolution of one cell from the first row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.6). 
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Figure 18: Snapshot of the output, the time evolution of one cell from the first row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.7). 
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Figure 19: Snapshot of the output, the time evolution of one cell from the first row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.8). 
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Figure 20: Snapshot of the output, the time evolution of one cell from the first row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.87). 

4.1.2. Negative coupling (r<0) 
When r is less than zero, texture like oscillating pattern is formed. In Figures 22 - 28 

observe the transition from the simpler to the more complex dynamics. The figure cap-
tions contain the actual value of parameter p. (p=[0.1 .. 0.7], r = – 0.3) See Template 10. 
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Figure 21: In the second row, right from the edge of the black part of the constant input (denoted by blue 
striped boxes) the first and second cells were sampled as shown in the figure. 
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Figure 22: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.1). 
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Figure 23: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.2). 
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Figure 24: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.3). 
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Figure 25: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.4). 
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Figure 26: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.5). 
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Figure 27: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.6). 
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Figure 28: Snapshot of the output, the time evolution of one cell from the second row, logarithm of power 
spectrum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.7). 

4.2 Programmed chip measurement 
The following subsections contain programmed chip measurements at different val-

ues of p for positive and negative values of r. While the measured waveforms do not co-
incide completely with that of the simulation, the qualitative details of the phenomenon 
are the same. 

4.2.1. Positive coupling (r>0) 
Cells from the first row were sampled (Figure 29). When p is small, the power spec-

trum contains dominant peaks according to the periodic signal. Later, when p is higher 
the peaks disappear or significantly decrease. Figures 29 - 37 show the measured time se-
ries, power spectrum and the trajectory of the two sampled cells. The sampling position 
is shown in Figure 29. The generator template for the figures is Template 11. 
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Figure 29: In the first row, to the right from the edge of the black part of the constant input (denoted by blue 
striped boxes) the second and third cells were sampled as shown in the figure. 
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Figure 30: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.45). 
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Figure 31: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.49). 
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Figure 32: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.51). 
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Figure 33: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.61). 
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Figure 34: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.69). 
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Figure 35: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.75). 
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Figure 36: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.79). 
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Figure 37: Snapshot of the output, the time series of one cell from the first row, logarithm of power spectrum 
and the 2D trajectory of the same cell and the neighbor cell from the first row (p=0.85). 

4.2.2. Negative coupling (r<0) 
In the negative coupling case we experiment similar phenomenon to that of the 

simulation.  

 

first row, 
constant black 
line constant input propagating pattern

second row, no 
propagation 

sampled cells (x1,x2) 
third row 

propagation 

 
Figure 38: In the second row, right from the edge of the black part of the constant input (denoted by blue 
striped boxes) the first and second cells were sampled as shown in the figure. 
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Figure 39: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.3). 
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Figure 40: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.34). 
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Figure 41: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.42). 
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Figure 42: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.5). 
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Figure 43: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.56). 
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Figure 44: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.6). 
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Figure 45: Snapshot of the output, the time series of one cell from the second row, logarithm of power spec-
trum and the 2D trajectory of the same cell and the neighbor cell from the second row (p=0.68). 

4.3 Visual signatures 
As it can be seen from the results, there is a correlation between the time evolution 

of the selected cells of the CNN and the dynamic behavior of the whole array. The 
propagation preserves the history of the dynamics, therefore the output picture can be 
suitable for characterizing the system without cell data measurements. Observe that, due 
to the spatial-temporal patterns, it is difficult to find characteristic 2D snapshots. Table 2 
shows the most characteristic signatures for the state of the CNN. 
 

Stable Chaotic 

 r > 0, p < 0  r > 0, p >> 0 

  r < 0, p < 0 
 

r < 0, p >> 0 

Periodic 

 r > 0, p > 0 

 r < 0, p > 0 

Table 2: Visual signatures for different values of r and p. 

5 The effect of the constant input and initial state 
An inherent property of the chaotic systems is the extreme sensitivity to the initial 

condition. In this section some results are presented related to this aspect. 

5.1 Periodic-chaotic transition 
Table 3 shows the effect of the different input patterns in the case of simulation and 

of chip measurements. The applied templates are the same for the two different inputs, 
i.e. the different behavior of the system is due to the difference of the input pattern. 
The first input is a five pixel wide vertical bar and the other input is a three pixel wide 
vertical bar. The input and the initial state are the same. 
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Figure 46: The five- and the three-pixel-wide inputs. 
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Table 3 Different dynamical behaviors with the same template but with different input and initial 
state. 

The result shows that if the input is the five pixel wide bar then the transient of the 
cell is periodic. But if the input is a three pixel wide bar, the transient – and the propagat-
ing pattern too – is chaotic. The reason for the difference is that the local oscillators 
along the left and right border of the bar can influence each other. This can happen only 
if there is no stable (constant, saturated black) vertical column of cells along the center of 
the bar. If the input is the three pixel wide bar there is no column of saturated (+1) stable 
cells in the bar. In the other case there is horizontally at least one pixel wide column of 
saturated stable cells. Thus, the oscillators along the left and right border of the bar are 
uncoupled. The cells were sampled in the second row. 
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Figure 47: Partitioning of the r-p parameter space when the input is a five pixels wide bar. The input 
picture is shown in the upper left corner. The pictures in the different regions show few typical snapshot 
of the output patterns belonging to that region. With this input no chaotic behavior has been found up 
to now. 
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1.0
000
02.10
000

03.00
1.17.01.1

000
=

















=
















−
−= zBA 1.2

000
010
000

05.00
9.05.09.0

000
=

















=
















−
−= zBA

 
(3) 

 
Figure 47 shows the r-p diagram in that case when the input and initial state is changed to 
the five pixel wide vertical bar. No chaotic behavior has been found up to now. However 
it cannot be excluded that it is possible to find a certain parameter setting at which the 
system produces chaos. Necessary condition for this seems to be that the stable saturated 
cells along the center of the bar becomes unstable. 

5.2 Stable-periodic transition 
The following table illustrates that a single pixel perturbation can alter the general 

dynamic behavior of the system. The only difference between the three inputs, which are 
also the initial state, is that a single pixel is changed from black to gray (and from gray to 
black in the other case) in the middle of the right vertical edge of the bar. In the first case 
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there is no propagation and no pattern. The second and third input however produces a 
periodic pattern. The boundary condition is periodic (torus-like left-right and bottom-up 
connections, this can be programmed, as well, on the chip). 
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Input 

 

   

 

Output  

   

 

The pattern as a “natural” 
pattern mapped onto a  

cylinder 
 

 

Table 4: Effect of one pixel perturbation. The first row contains three different inputs. The first one is a 
vertical bar. The second one is the same except one pixel: a pixel is clipped off from the middle of the 
right border of the pattern. In the third one a pixel is added to the middle of the right border of the pat-
tern. The circles denote the location of the difference. The second row contains the corresponding snap-
shots of the output patterns. In the first column the solution is equilibrium. The second and third column 
shows periodic (in space and time) solution. 

6 1D chaos 
Based on the measurements and the simulations we can construct the possibly sim-

plest template that can exhibit chaos. 
The general structure of the templates presented in this paper shows that a CNN cell 
does not depend on the cells above it. In the cases above (Templates 13,14) we measured 
and simulated chaotic signals in that row which has a constant valued row below it. 
Therefore, if we integrate the effect of the constant valued row into the constant input it 
is possible to construct a 1D CNN (template, initial state and input) for which the system 
is chaotic (see Figure 48 and Figure 49). All boundary cells were set to zero. 

 

(a)    
-0.92 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 0.7 0.7 -0.8 -0.8 -0.8 -0.8 -0.8 

 

(b) 

Ce
lls

 →
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Figure 48: (a) Input for the 1D chaotic CNN. (b) The generated 1d pattern as a function of time. 
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Figure 49: The time evolution, the power spectra of one cell and the trajectory of two neighboring cells. 

7 Additional propagating pattern examples 
This section shows some patterns which are generated with more complicated tem-

plates. The basic structure is the same i.e. the antisymmetry is preserved but some non-
zero couplings are added. The corresponding templates matrices are shown bellow of the 
figures. 

7.1 Wave shadow 
This special shadow operator produces different patterns depending on the central 

element p. The main structure remains the same at different values of p, but the border of 
the shadow looks like traveling wrinkles. The phenomenon related to the change of p is 
similar to that of described in Section 3. 
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 input p 0.15 0.41 0.94 

Table 5: Snapshots of the simulation and of the chip measurements of the 
complex wave template. 
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Template 17: Template for the simulation Template 18: Template for the chip  
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With a different template setting a characteristic trajectory is measured on the chip. 
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Figure 50: Snapshots of trajectory of two out of 4096 state variables of the CNN array (chip measure-
ment). 

7.2 “Four pixels” examples 
The following patterns are simulated using the standard CNN model [4]: 

(t))f(x(ty

zuB(t)yA(t)x(t)x

ijij

Skl Skl
klklklijklijij

r r

=

+++−= ∑ ∑
∈ ∈

)

,D

(5) 

 
The nonlinearity f(x) is shown in Figure 51. The next examples show different patterns, 
all of which are generated from the same input. The “seed” of the patterns is a four-pixel 
wide horizontal line section. The initial state is the same as the input. 

 f(x)

x

-1 1

1

-1

 
Figure 51: The nonlinearity f(x) 
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Figure 52: Input and initial state for the propagating patterns. 

7.2.1. Bird 
This example shows a propagating pattern which makes the impression of distant flying 
birds. 
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7.2.2. Volcano eruption 
This pattern “erupts” periodically during the propagation. It looks like some fluid coming 
out of a pipe. 
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7.2.3. Flower 
This pattern grows like a plant. 
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8 Simulation time vs. real-time measurements 
A sophisticated simulation of chaotic systems takes several minutes (or even hours), 

especially when the dimension of the system is high. Using the new programmable 
ACE4K test bed it is possible to speed up the analysis process of the chaotic system by at 
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least four orders of magnitude. Table 6 shows the comparison of a typical simulation and 
the real time chip measurement. 
 

SSiimmuullaattiioonn    
((550000MMhhzz  PPCC)) 

CChhiipp  mmeeaassuurreemmeenntt  
  ((wwiitthh  ssaammpplliinngg)) 

CChhiipp  mmeeaassuurreemmeenntt  
((wwiitthhoouutt  ssaammpplliinngg))  

2255  mmiinn  ==  11550000  sseecc 220000  mmss 55  mmss 

Table 6: Comparison of simulation and chip measurement time. 

9 Conclusion 
Various propagating patterns represent a new and interesting spatial-temporal pattern 

class. Long and sophisticated analysis and digital computer simulation is necessary to un-
cover the characteristics of the complex dynamics of this class. The new analogic pro-
grammable ACE4k topographic microprocessor test-bed is an ideal tool for experimental 
work, which makes it possible to speed up the analysis process by more than four orders 
of magnitude. 

Both the simulations and the real-time experiments with the ACE4k test bed showed 
that if we add a single nonzero element r to a CCD-like antisymmetric template, the be-
havior of the system is significantly changed, complex dynamics occurres and characteris-
tic patterns are formed. At certain parameter settings – especially when the self-feedback 
p is high – the output pattern showed a unique chaotic pattern. The layout of the r-p pa-
rameter space showed characteristic structure. As it can be seen from the parameter 
space diagram, the dynamics of the system strongly depends on the self-feedback and on 
the initial state (and input).  This sensitive dependence on the initial state can be suitable 
for morphological detection. We expect that future works discover additional interesting 
and useful properties of this template class and helps to understand more the complex 
dynamics. It would also lead to a new class of analogic spatial-temporal algorithms for 
the dynamic detection of exotic and complex events. 

Acknowledgements 
This research was supported by the Computer and Automation Research Institute of 

the Hungarian Academy of Sciences (SZTAKI), Office of Naval Research (ONR) Grant 
No.: N00014-00 1 0429 and the Hungarian National Foundation (OTKA) Grant No.: T 
O26 555. 

References 
[1] L. Chua and T. Roska, “Cellular neural networks and visual computing - Founda-

tions and applications”, Cambridge University Press, Cambridge ISBN: 
0521652472, 2001 

[2] T. Roska, Á. Zarándy, S. Zöld, P. Földesy and P. Szolgay, “The Computational In-
frastructure of Analogic CNN Computing - Part I: The CNN-UM Chip Prototyp-
ing System”, IEEE Trans. on Circuits and Systems I: Special Issue on Bio-Inspired 
Processors and Cellular Neural Networks for Vision, (CAS-I Special Issue), Vol. 46, 
No.2, pp. 261-268, 1999 

[3] G. Liñan, S. Espejo, R. Domínguez-Castro, A. Rodríguez-Vázquez, “The 
CNNUC3: An Analog I/O 64x64 CNN Universal Machine Chip Prototype with 7-
Bit Analog Accuracy”, Proceedings of IEEE Int. Workshop on Cellular Neural Networks 
and Their Applications, (CNNA'2000), pp. 201-206, Catania, 0-7803-6344-2, 2000 



 28

[4] L.O. Chua and L. Yang, “Cellular Neural Networks: Theory”, IEEE Trans. on Cir-
cuits and Systems, Vol.35. pp. 1257-1272, 1988. 

[5] L.O. Chua and L. Yang, “Cellular neural networks: Applications”, IEEE Trans. on 
Circuits and Systems, Vol.35. pp. 1273-1290, 1988. 

[6] L.O. Chua and T. Roska, “The CNN paradigm”, IEEE Trans. on Circuits and Systems 
I: Fundamental Theory and Applications, Vol.40, No. 3, pp. 147-156, 1993. 

[7] T. Roska and L.O. Chua, The CNN universal machine: an analogic array computer, 
IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing Vol. 40, No. 
3, pp. 163-173, 1993. 

[8] A. Rodriguez-Vázquez, S. Espejo, R. Dominguez-Castro, J.L. Huertas, and 
E.Sánchez-Sinencio, “Current-Mode Techniques for the Implementation of Con-
tinuous- and Discrete-Time Cellular Neural Networks”, IEEE Trans. on Circuits and 
Systems II: Analog and Digital Signal Processing, Vol.40. No.3. pp. 132-146, 1993 

[9] F. Zou and J.A. Nossek, “Stability of cellular neural networks with opposite sign 
templates”, IEEE Trans. on Circuits and Systems, (CAS), Vol. 38. pp. 675-677, 1991 

[10] P. Thiran, G. Setti, and M. Hasler, “An approach to information propagation in 1-
D cellular neural networks—Part I: Local diffusion”, IEEE Trans. Circuits Systems I, 
Vol.45, No.8, pp. 777–789, August 1998. 

[11] G. Setti, P. Thiran, and C. Serpico, “An approach to information propagation in 1-
D cellular neural networks—Part II: Global Propagation”, IEEE Trans. Circuits Sys-
tems I, Vol.45, No.8, pp. 790–811, August 1998. 

[12] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, “Pattern formation properties 
of autonomous cellular neural networks,” IEEE Trans. Circuits Systems I, vol. 42, pp. 
757–776, Oct. 1995. 

[13] F. Zou, J.A. Nossek, “Bifurcation and Chaos in Cellular Neural Networks”, IEEE 
Trans. on Circuits and Systems I: Fundamental Theory and Applications, (CAS-I), Vol.40, 
No.3, pp.166-173, 1993 

[14] M. Biey. M. Gilli, and P. Checco, “Complex Dynamic Phenomena in Space-
Invariant Cellular Neural Networks”, IEEE Trans. on Circuits and Systems I: Special Is-
sue, March 2000 (in print).  

[15] G. Manganaro, P. Arena, L. Fortuna “Cellular Neural Networks: Chaos, Complexity 
and VLSI Processing”, Springer Verlag, New York; ISBN: 3540652027, 1999 

[16] L. O. Chua and T. Roska, “Stability of a Class of Nonreciprocal Cellular Neural 
Networks”, IEEE Trans. on Circuits and Systems, Vol.37.pp. 1520-1527, 1990  

[17] Cs. Rekeczky and L.O. Chua, “Computing with Front Propagation: Active Contour 
and Skeleton Models in Continuous-Time CNN”, Journal of VLSI Signal Processing 
Special Issue: Spatiotemporal Signal Processing with Analogic CNN Visual Micro-
processors, (JVSP Special Issue), Vol. 23. No.2/3. pp. 373-402, guest editors: T. 
Roska and Á. Rodríguez-Vázquez, Kluwer, ISSN 0922-5773, 1999 

[18] T. Roska and A. Rodríguez-Vázquez (editor), “Towards the Visual Microprocessor: 
VLSI Design and the Use of Cellular Network Universal Machines”, John Wiley & 
Sons; Chichester, ISBN: 0471956066, 2000 

[19] The ALADDIN System, http://www.analogic-computers.com 



 29

Appendix 
The programming of the test-bed is possible through a high-level language interface 

called Alpha. Here you will find a typical Aplha language code for the simulation and 
measurement. 
 

PROGRAM complex_dynamics (;);

CONSTANT
ZERO = 0.0;
ONE = 1;
BoundaryValue = 0;
TimeValue = 10;
TimeStepValue = 0.1;
ENDCONST;
A_CHIP
SCALARS
IMAGES
chip_p1: ANALOG;
chip_p2: ANALOG;
chip_p3: ANALOG;
chip_p4: ANALOG;
chip_pOut: ANALOG;
chip_InputValue: ANALOG;
chip_StateValue: ANALOG;
chip_BiasValue: ANALOG;
ENDCHIP;

E_BOARD
SCALARS
IMAGES
board_p1: BYTE;
board_p2: BYTE;
board_p3: BYTE;
board_p4: BYTE;
output: BYTE;
ENDBOARD;

FUNCTION func_complex;
USE ( COMPLEX );

SwSetTimeStep (TimeStepValue); /* Set the timestep */
chip_p1 := board_p1;
chip_InputValue := ZERO;

COMPLEX(chip_InputValue, chip_p1, chip_pOut, TimeValue, BoundaryValue);
/* Computation of the transient */

output := chip_pOut;

ENDFUNCT;

PROCESS complex_dynamics; /* this is the main program */
USE ();

HostGetImage(ONE, board_p1, A_GRAY); /* Acquire the input */

func_COMPLEX; /* function call */

HostDisplay(output, ONE); /* Display the result */

ENDPROCESS;
ENDPROG;
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