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There is hardly a more important sensory modality for humans and other mammals than vision.
The first and best-known part of the visual system is the retina, which is not a mere photorecep-
tor or static camera but a sophisticated feature preprocessor with continuous input and several
parallel output channels. These interacting channels represent the visual scene. Never before has
it been known in neuroscience how these channels build up a “visual language”. Our mammalian
retina model can generate the elements of this visual language. In the present paper the design
steps of the implementation of the multilayer CNN retinal model is shown. It is rare that an
analogic CNN algorithm has such a sophisticated series of different complex dynamics, mean-
while it is feasible on a recently fabricated complex cell CNN-UM chip. The mammalian retina
model is decomposed into a full-custom mixed-signal chip that embeds digitally programmable
analog parallel processing and distributed image memory on a common silicon substrate. The
chip was designed and manufactured in a standard 0.5 µm CMOS technology and contains ap-
proximately 500,000 transistors. It consists of 1024 processing units arranged into a 32 × 32
grid. The functional features of the chip are in accordance with the second-order complex cell
CNN-UM architecture: two CNN layers with programmable inter- and intra-layer connections
between cells as well as programmable layer time constants. The uniqueness of this approach,
among others, lies in the reprogrammability, i.e. the openness to any new discovery, even after
a possible retinal implementation.

Keywords : Rabbit retina; multi-channel inner retina; model decomposition; silicon retina; cellular
neural network; CACE1k.

1. Introduction

This paper presents an analogic CNN algorithm,
i.e. analog and logic transient array computation
model, in order to mimic the mammalian retina.
The modeling approach is neuromorphic in its
spirit, relying on both morphological and electro-

physiological information. The fine-tuning of the

model is based on the flashed square response in

the rabbit retina. Such an algorithm can be use-

ful for many purposes, e.g. to improve and develop

more efficient algorithms for object classification,

recognition and tracking. Due to the computational

427



March 4, 2004 17:15 00930
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complexity of the algorithm the model can also
help to create sensing aids, like retina prosthesis
or retina-chips [Wyatt & Rizzo, 1996; Dagnelie &
Massof, 1996; Boahen, 2002; Hesse et al., 2000].

The cellular neural/nonlinear network (CNN)
is a regular, single or multilayer, parallel process-
ing structure with analog nonlinear computing base
cells [Chua & Yang, 1988]. The state value of each
individual processor is continuous in time and their
connectivity is local in space. The function of the
network is completely determined by the pattern of
the local interactions, the so-called template [Chua
& Roska, 1993]. The time-evolution of the analog
array transient, given by the template operator and
the processor dynamics, represents the computation
in CNN [Chua & Roska, 2002]. The result of the
computation can be defined in equilibrium points
for image processing tasks or nonequilibrium states
of the network for transient computation or retina
modeling [Chua, 1998]. Completing the base cells
of CNN with local sensors, local data memories,
arithmetical, and logical units, plus global program
memories and control units have resulted in the
CNN Universal Machine (CNN-UM) architecture
[Roska & Chua, 1993].

The Complex Cell CNN programmable
array computer is an extension of the CNN
Universal Machine with two or more CNN core
layers. Its second-order 3-layer version provides
complex spatial-temporal dynamics with a few pro-
grammable parameters [Rekeczky et al., 2000]. The
elementary cells of the specific chip (CACE1k) are
organized into a 32 × 32 square grid. Each cell has
second order dynamics and local interconnections to
its neighbors [Carmona et al., 2002]. This structure
is especially suitable for computing a certain com-
plex set of ordinary differential equations. Simple
PDEs can be transformed so that they can be eas-
ily programmed on the array computer. With the
programmable Complex Cell CNN Universal Ma-
chine scientists have been provided with a unique
opportunity to study some active-wave propagation
and other reaction–diffusion differential equations
based phenomena in a programmable manner, in
real-time.

A realistic mammalian retina model, abbre-
viated MRM, should reproduce the measured 2D
spatial-temporal patterns described in [Roska &
Werblin, 2001]. An MRM is not necessarily simple
nor does it operate in a huge parameter space [Koch
& Segev, 1989] thus a well-designed MRM can be
implemented on silicon. It can reproduce the full

range of the known retinal phenomena, not just one
general effect or some selected features but each and
every measured retina effect. Its outputs are the re-
sponses of several different ganglion cell types or
parallel retina channels [Roska & Werblin, 2001].
It needs qualitatively more sophisticated construc-
tions than the spatial “resistive grid” idea, i.e. cou-
pled diffusion layers with different time-constants
and not necessarily symmetric weight templates. An
MRM can be tuned to different species.

The presented mammalian retina model repro-
duces several 2D space-time patterns, embedded in
a multi-layer CNN framework [Balya et al., 2002].
The algorithmic approach enables us to adapt the
model to different measured retina phenomena. The
steps of the algorithm can also be implemented by
hardware. By combining a few simple CNN lay-
ers copying receptive field dynamics, and embed-
ding these into a stored programmable CNN-UM we
can generate not just simple, but complex spatial-
temporal patterns.

This is the first time that a programmable, real-
istic, and implemented complete mammalian retina
model is presented. In Sec. 2, we show the CNN
computational framework as a formal introduction.
Section 3 contains the outer retina model as a case
study. In Sec. 4 the structure of the complete retina
model is described. Section 5 deals with the de-
composition of the multilayer model to simple uni-
form elements that we call Retinal Units. Section 6
gives a concise description of the recently fabricated
complex-cell CNN-UM chip. We present our first ex-
periments with this CACE1k chip and describe the
measurements of the retina blocks in Sec. 7.

2. Wave Computing Formal

Introduction

(1) Data is defined as a continuous image flow Φ(t)

Φ(t) : {ϕij(t), i=1, 2, . . . , n; j =1, 2, . . . , m}

∈ R2 t ∈ T =[0, t∗]

A frame is obtained by setting the time variable
in a given finite time instance t∗, i.e. P = Φ(t∗).
Without loss of generality, we may assume that
in a grayscale image the black and white lev-
els are represented by +1 and −1, the gray
levels are in between. We will display sample
frames from the image flow at different time-
instances using pseudo-coloring (+1 dark red
and −1 dark blue) to improve the visualization,
see Fig. 3.
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Fig. 1. The graphical representation of the elementary wave processing. The individual ϕij (t) base units and their connec-
tions are shown on the left. On the right the horizontal bar represents the processing structure as a two-dimensional layer
and the arrows show the external connections to each cell. The color of the arrow refers to the sign of the connection i.e. red:
positive, green: negative, yellow: zero, and pink: any. At the far right a simple flow-chart notation is shown [Roska, 2003].

(2) Elementary instructions Ψ are the basic wave instructions:

Φoutput(t) = Ψ(Φinput)

Input : U(t) ≡ Φinput : uij(t), t ∈ T

State : X(t) ≡ Φ(t) : xij(t), t ∈ T Initial state :X(0)

Output : Y(t) ≡ Φoutput : yij(t), t ∈ T

Bias : Z = zij time invariant and space variant map

Operator : the solution of the two-dimensional spatial-temporal state equation/output equation:

τ
dxij(t)

dt
= −xij + zij +

∑

kl∈Sr(ij)

Aijklykl(t) +
∑

kl∈Sr(ij)

Bijklukl(t) (1)

Sr(·) : sphere of influences: Sr(ij) = {C(kl) : max{|k−i|, |l−j|} = r} yij(t) = σ(xij(t)); σ: a nonlinear,
usually sigmoid function

(3) This simplest wave instruction is equivalent to the CNN dynamics:

τ
dxij(t)

dt
= −xij + Iij(t) yij(t) = σ(xij(t)) (2)

and the local cell interaction “pattern” is defined by

Iij(t) =
∑

kl∈Sr(ij)

Aijklykl(t) +
∑

kl∈Sr(ij)

Bijklukl(t) + zij (3)

The C : {A, B, z} is the cloning template [Chua, 1998].
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Fig. 2. The circuit diagram of a single CNN base cell with the important signals and interactions.
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Useful notations:

ẋ ≡
dxij(t)

dt
; A ∗ y ≡

∑

kl∈Sr(ij)

Aijklykl(t) ;

if (Sr = 0)
∑

kl∈Sr(ij)

Bijklukl(t) = bijuij(t)

(4)

(4) A single cell can be implemented by a circuit
and the interactions can be added, as shown in
Fig. 2.

3. Case Study: Outer Retina Model

This section shows some common partial retina
models starting with the simplest one, while our
complete retina model is presented in the next
section. Each step is described in several ways: dif-
ferential equations, cloning template, graphic repre-
sentation of the processing structure, and the sim-
ulated output of the system for a common input

image flow or stimulus. The input is a static im-
age which disappears suddenly, after a certain time
tcut, but the state of the system is not altered exter-
nally. The state evolution starts from a zero initial
state X(0) = 0 and evolves continuously in time and
value until tend. The formal definition of the input
flow is given in Eq. (5) and the stimulus is shown
in Fig. 3. The graphical representation of the sin-
gle, continuous flow contains two rows, the upper
one displays the frames came from t ≤ tcut and the
second one from t > tcut.

U(t) =

{

Static image 0 ≤ t ≤ tcut

Gray field tcut < t ≤ tend
(5)

3.1. Simple näıve outer retina

model : Diffusion effect

The simplest dynamic retina effect is the diffusion
or blurring [Gál et al., 2004]. It incorporates one dy-
namic layer with simple nearest neighborhood feed-
back connections. The diffusion is originally defined
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Fig. 3. The test input image flow of the outer retina, the stimulus. The continuous input flow is sampled at certain time-
points, these are the pseudo-colored frames. The two rows are the input of the system before the sudden change (static image)
and after the change (gray field).
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Fig. 4. The CNN description of the simple näıve outer retina model. The first row shows the differential equation, the second
row displays the CNN template structure, the third row is a graphic representation of the processing structure, and the last
row shows the simulated output (out) of the system for the continuous input flow given in Fig. 3.

as a differential equation operating on a spatially
continuous input (analog input: Fxy(t)). It is dis-
cretized in space in order to be implemented as a ba-
sic wave instruction on CNN with a low-complexity
template structure [Chua, 1997], given in Eq. (6).
The space constant λ is a free parameter, which con-
trols the strength of the diffusion. Figure 4 shows
the processing structure. The arrows are colored us-
ing the conventions given in Fig. 1. The first frame
shows the output of the system at time zero, clearly
it displays the initial state of the system: X(0) = 0.

Fxy(t)← U(t) ; Y (t)← Fxy(t)

dFxy(t)

dt
= −λ2 d2Fxy(t)

dxdy
⇒ ẋ = −x + A ∗ y + u

⇒ C :







Aλ =λ2





1 2 1

2 −12 2

1 2 1



 , B=1, z=0







(6)

3.2. Simple “silicon retina”

Let us combine the previous simple diffusion in
Sec. 3.1 with a static layer to compute spatial-
temporal edges. The hardware implementation of
this structure is straightforward: a two-dimensional
photoreceptor field is coupled by a resistive grid and
the output is the difference between the primary im-
age and the blurred one [Werblin & Jacobs, 1994;
Cauwenberghs & Waskiewicz, 1999]. Results are
illustrated in Fig. 5.

3.3. Difference of Gaussians

principle DOG

Difference of Gaussians is an image enhancement
method that involves the subtraction of one blurred
version of a grayscale image from another, less
blurred version of the original input. The blurred
images are obtained by convolving the original
grayscale image with two Gaussian kernels having
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Fig. 5. The CNN description of the simple “silicon retina”. The upper part of the figure shows the differential equation
and the CNN template and processing structure, while the last row shows the simulated output (out) of the system for the
continuous input flow illustrated in Fig. 3.

different standard deviations. The CNN implemen-
tation of the Gaussian blurrings are done by two dif-
fusion templates, with two different λ’s. It is equiv-
alent to a bandpass filter that discards all unwanted
spatial frequencies present in the original input.
In its operation, the difference-of-Gaussians algo-
rithm is believed to mimic how neural processing
in the retina extracts details from images destined
for transmission to the brain [Linsenmeier et al.,
1982]. The latest findings about the retina, e.g. the
parallel channels [Werblin & Roska, 2004], provides
a more appropriate view of the process, therefore
the model of the complete retina is based on those
results.

3.4. 2-layer wave instruction :

Dynamic outer retina models

This section presents the basic behavior of two mu-

tually coupled CNN layers. The first emphasizes
the second-order temporal dynamics of the retina

and the second structure emphasizes the edge en-

hancement property of the retina. These effects

should be combined to make a realistic outer retina

model. The previous models in Secs. 3.1–3.3 can

be implemented as analogic algorithm using one

dynamic layer so they are feasible on the ACE4k

CNN-UM chip [Espejo et al., 1996a; Liñan et al.,

2000]. The structure in this section has two strongly
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Fig. 6. The CNN description of the difference of Gaussians method. The upper part of the figure shows the differential
equations and the CNN template and processing structure, while the last row shows frames from the continuous output (out)
of the system, the difference between the two dynamic layers.

coupled dynamic layers, therefore their implemen-
tation needs second-order CNN base cells, which is
currently available only in the CACE1k complex-
cell CNN-UM chip [Carmona et al., 2003].

The difference between the two dynamics can
be seen by comparing the two simulated outputs.
The input is the same continuous flow and color
coding as in Fig. 3. Explore the second-order ef-
fect in Fig. 7(a): the color of the arch changes
from blue to navy and back to cyan or below the
arches from red to maroon and back to tomato red.
Moreover a strong negative scene, slate blue color
between the arches, can be seen after the static im-
age disappeared — it is a well-known retina effect.

Figure 7(b) shows the other structure, which en-
hances the edges.

3.5. 3-layer Outer Plexiform Model

(OPL)

The second-order structures in Sec. 3.4 are inte-
grated into one system to create a more realistic
outer retina model. This model can reproduce both
the spatial and the temporal properties of the re-
quired retina qualities [Balya et al., 2002], there-
fore it may be considered as the best neuromor-
phic model of the outer retina among the presented
ones. The hardware implementation of the structure
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involves two locally coupled two-dimensional layers
and a third capacitor to each complex base cell. The
modest complexity of the system makes it hardware
feasible.

The integration of the effects can be investi-
gated by comparing Figs. 7 and 8. In Fig. 8 the color
of the space below the arch changes in time from
crimson to black and back to coral as in Fig. 7(a)
but the last frame is sharper and in Fig. 7(b). More-
over a strong negative image in dark blue color can
be seen after the static image disappeared, like in
Fig. 7(a). The color coding and the input can be
seen in Fig. 3.

4. The Main Goal: A Complete

Retina Model

A good outer retina model is just the beginning to
establish a neurobiologically relevant retina model.
Our main goal is to design a realistic, qualitatively
correct complete mammalian retina model and to
implement it on silicon. The neurobiological experi-
ments provide clues to our work. The anatomy pro-
vides basic information about the structure of the
circuitry. The electro-physiological measurements of
the neurons enable us to identify the most impor-
tant couplings and their strength [Rekeczky et al.,
2001; Balya et al., 2002b]. Pharmacology can serve
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(a)

Fig. 7. The CNN descriptions of the dynamic outer retina models. (a) Emphasizes the temporal dynamics of the retina, while
(b) shows a better edge enhancement. Look at the difference between the frames around the arches.
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(b)

Fig. 7. (Continued )

as a verification tool by virtually modifying the in-
ternal structure of the measured retina [Werblin
et al., 1995]. The basic structure of our model is
derived from textbooks on the retina morphology
[Kandel et al., 2001] and from the latest results re-
lated to the structure of the inner retina [Werblin
& Roska, 2004]. The model parameters can be es-
timated from the measured space-time patterns us-
ing spatial-temporal analysis and they can be finely
tuned by comparing the simulation and measure-
ment data [Roska & Werblin, 2001; Rekeczky et al.,
2001].

Following our previous paper [Balya et al.,
2002], the retina contains hierarchically organized

neuron layers. From a neurobiological point of view
several types of neurons are in the retina, but fortu-
nately, they can be categorized into five main groups
or classes: photoreceptors (cones, rods), horizontal,
bipolar, amacrine, and ganglion cells. The ganglion
cells form the optical nerve [Dowling, 1987].

4.1. One realistic retina channel :

The twin wave processing

principle

The light-adapted mammalian retina model con-
sists of the following parts: the outer retina model
and the multichannel feature extracting inner retina
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Fig. 8. The CNN description of the outer plexiform layer, which is an outer retina model. The upper part of the figure shows
the differential equations and the CNN template and processing structure, while the last row shows the simulated output (out)
of the system for the continuous input flow illustrated in Fig. 3. Observe the temporal dynamics and the edge enhancement
of the model.

model. The basic operation scheme is presented in
this issue [Werblin & Roska, 2004]. Each channel
consists of three functional blocks: the excitation,
the inhibitory subsystem and the combining gan-
glion cell model. Each of these blocks can be par-
tially or completely implemented on the CACE1k
chip [Carmona et al., 2003] as a multilayer template,
see Sec. 7 where these templates are given.

The input image flow is separated into two
parts, these are processed simultaneously to form
the excitation and the inhibition flows, respectively,
and then combined together giving the result of

the computation. The processing can be seen as a
wave computation in the CNN terminology [Chua &
Roska, 2002]. The abstract description of the retina
channel processing is the following. The first wave
instruction divides the continuous input into two
flows. The other wave instructions operate on one
of these flows to enhance some predefined features.
These two qualitatively different processing flows
are combined into the last stage: the inhibition flow
blocks out some part of the excitation flow to form
the output of the system. This is the twin wave pro-
cessing principle [Roska, 2002], see Fig. 9.
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Fig. 9. The twin wave processing principle as the fundamen-
tal base of our retina model. The names of the stages refer
to a retina model block and to its function.

The general minimal model of one retina chan-
nel contains a second-order photoreceptor and hor-
izontal layer to model the outer retina. The names
of the CNN layers refer to the name of the mod-
eled neuron class. The main role of the outer retina
may be the normalization through local adaptation.
During the twin wave processing the output of the
outer retina is processed in a nonlinear fashion to
form the two different inputs to the ganglion cell

layer. A bipolar and amacrine feedback layer gener-
ates the excitation, a bipolar and an amacrine feed-
forward layer forms the inhibitory subsystem. The
signs of the inputs of the bipolar layers are different
and the outputs of the bipolar layers are nonlin-
ear. The modeled ganglion cell layer subtracts the
inhibition from the excitation and computes the dy-
namic, continuous output of the system.

4.2. The complete mammalian

retina model

The mammalian retina sends a parallel set of about
a dozen different space-time representations of the
visual world to the brain. These are the retina
channels [Roska & Werblin, 2001]. Each output
channel corresponds to one ganglion cell type. It
is important that there is no discrete time image —
snapshot or frame — in the retina. Each of these
representations is generated by the twin wave pro-
cessing by feature detecting transformations. The
identifications of the model elements and the imple-
mented functions in the parallel processing channels
are based on retinal anatomy and electro-physiology
measurements for a flashed square stimulus. Our
complete mammalian retina model reproduces qual-
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Fig. 10. The processing structure of the complete CNN retina model. The different neuron types in the retina are organized
into two-dimensional strata modeled with CNN layers (horizontal lines). A neuron in a given layer affects other neurons
through nonlinear synapses (arrows). The layers have different time and space constants. The channels comply with the twin
wave principle, compare with Fig. 9.
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itatively the same outputs for the flashed square
stimulus [Balya et al., 2002].

Each parallel pathway in the retina consists
of interacting, hierarchically organized and locally
connected diffusion layers with different space and
time constants. The modeled parallel pathways dif-
fer only in time constants and parameters of the
diffusion. The details of the processing structure is
given by Werblin and Roska [2003]. Figure 10 gives
an overview about our mammalian retina model
showing the common outer retina and the paral-
lel twin wave computing blocks, called channels.
The output of the complete mammalian retina is
not a single image but it consists of several paral-
lel, continuous image flows. Each block of the inner
retina may have different complexity. The simplest
blocks are depicted on the left-hand side of Fig. 10
and some more complex blocks are shown on the
right side. The latter ones incorporate second-order
cell models (double horizontal line) or desensitizing
synapses (double vertical arrow) [Balya et al., 2002].
Desensitization makes a sensitized or hypersensitive
model cell insensitive (synaptically not sensitive) to
the sensitizing agent, in this case to the input layer,
for details see Sec. 7.4.

5. Model Decomposition to Retinal

Units

The developed multilayer CNN mammalian retina
model should be decomposed to make it suitable for
existing chip technologies. The decomposition takes
place in three different domains:

• Temporal decomposition to compute the
“frames” iteratively;

• Spatial decomposition of the whole visual field to
map a higher resolution scene on the chip; and

• Structural decomposition of the multilayer model
into complex-cell blocks.

The target platform of our decomposition is the 3-
layer “Retinal Unit” [Werblin et al., 2001]. Its differ-
ential equations are Eqs. (7) and (8) and the struc-
ture of the unit is shown in Fig. 11. Each layer of
the unit consists of first-order RC cells having ad-
justable time constants (multiple time-scale prop-
erty). The output characteristics are sigmoid-type
functions σ(·) and the boundary condition can be
constant or zero flux. The neighborhood radii are
one for intra-layer connections (e.g. A11) and zero,
cell-to-cell links, for inter-layer connections (A12 →
a12, A21 → a21) in our present model framework.

The inter-layer feedback connections (e.g. a21) can
be nonlinear functions f(·) e.g. rectifier.

τ1
dx1,ij(t)

dt
= −x1,ij(t)+

∑

kl∈S1

A11,ijklσ(x1,kl(t))

+
∑

kl∈S1

A21,ijklf(x1,kl(t))

− a31x3,ij(t)+b1uij+z1,ij

τ2
dx2,ij(t)

dt
= −x2,ij(t)+

∑

kl∈S1

A22,ijklσ(x2,kl(t))

+
∑

kl∈S1

A12,ijklf(x1,kl(t))+b2uij+z2,ij

τ3
dx3,ij(t)

dt
= −x3,ij(t) + x1,ij(t) + z3,ij

(7)

where,

typically σ(x) = f(x) =
|x + 1|+ |x− 1|

2

Aij =

∣

∣

∣

∣

∣

∣

∣

a 2a a

2a c 2a

a 2a a

∣

∣

∣

∣

∣

∣

∣

,

if (intra-layer: i = j) c = 1− 12a− bi

(8)

5.1. Structural decomposition

The developed complete mammalian retina model is
a multilayer CNN model [Balya et al., 2002]. It con-
sists of several coupled CNN layers that can fortu-
nately be decomposed into smaller blocks. The first
step of the decomposition is to determine the tightly
coupled blocks. They have both feed-forward and
feedback connections but between two such blocks
only feed-forward links exist and these connections
can be cut off. The results are Retinal Units, simple
complex-cell blocks, as shown in Fig. 11. The blocks
of the decomposed model are the outer retina, the
excitation blocks and the ganglion-complex blocks.
The latter is the combination of the inhibitory layer
and the ganglion layer. The excitation block can
be either second-order or desensitized, see Secs. 7.3
and 7.4, respectively. The parameters of the blocks
can be straightforwardly derived from the existing
model. The pseudo-code of the decomposed retina
model algorithm and the interfaces between the
blocks are presented in Table 1. The blocks should
be computed parallel (e.g. as threads). The opera-
tors are spatial-temporal wave instructions on the
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Fig.11. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 
 

Fig. 11. The structure of the Retinal Unit. The horizontal bars represent two-dimensional CNN layers and the arrows rep-
resent the effects between the locally connected cells.

Table 1. The result of the structural decomposition of the complete mammalian retina model is an
analogic algorithm.
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Compute the parallel channels
in: stimulus; out: retina channels

• comp_dynamics outer retina block

in1: stimulus; out: oplout

• parallel for each bipolar block

comp_dynamics ith bipolar block in1: oplout

comp_nonlin function out: excitation

• parallel for each ganglion block

sum relevant excitations

if inhibition is complex comp_dynamics inhibition

in1: excitation; out: inhibition

comp_dynamics ith ganglion block

in1: ith excitation - inhibition in2: jth excitation

comp_nonlin function out: ganglion channel

 

Table 1 

 

Section 5.3 

 

Compute a video clip for one channel

1. Load the next frame

2. Repeat twice:

3. Execute: Outer retina template (input: the frame)

4. Repeat twice:

5. Execute: Bipolar #1 template (both input: outer retina)

6. Execute: Nonlinear template

7. Execute: Bipolar #2 template (both input: outer retina)

8. Execute: Nonlinear template

9. Execute: Output template (inputs: the two bipolar output)

10. Threshold template gives the result

11. Send back the result and jump to 1.

 
Table 2 
 

Retinal Unit structure and the outputs are the sam-
pled frames of the transient and not the steady state
of the system.

The inhibition is complex if it needs more than

one dynamic layer. The comp nonlin operation
uses the following settings. It implements a recti-
fier or Heavyside-function: the output y is equal to
zero under the threshold (th). The corresponding
CNN template is described in Eq. (9).

C :

{

A11 = A22 = 0; g31 = 0, a12 = 1, a21 = 0; z1 = 1− th; z2 = th− 1

b1 = 1; b2 = 0; τ1 = τ2

}

out = x2 (9)

5.2. Spatial decomposition

The resolution of the complete visual field is usu-
ally larger than the actual chip, in other words, the
input is larger than the processing area. The clas-
sical solution says that the input should be split
into overlapping areas. The size of the overlapping

bands can be computed if the processing lasts for a

finite time, because the number of the affected cells

depends on the diffusion constant, only. The pro-

cessing time and the coupling (λ) rule the number

of the potentially influenced cells.



March 4, 2004 17:15 00930
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Table 2. Algorithm skeleton to compute one channel of the mammalian retina model.
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Compute the parallel channels
in: stimulus; out: retina channels

• comp_dynamics outer retina block

in1: stimulus; out: oplout

• parallel for each bipolar block

comp_dynamics ith bipolar block in1: oplout

comp_nonlin function out: excitation

• parallel for each ganglion block

sum relevant excitations

if inhibition is complex comp_dynamics inhibition

in1: excitation; out: inhibition

comp_dynamics ith ganglion block

in1: ith excitation - inhibition in2: jth excitation

comp_nonlin function out: ganglion channel
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Compute a video clip for one channel

 1. Load the next frame
2. Repeat twice:

3. Execute: Outer retina template (input: the frame)

4. Repeat twice:

5. Execute: Bipolar #1 template (both input: outer retina)

6. Execute: Nonlinear template

7. Execute: Bipolar #2 template (both input: outer retina)

8. Execute: Nonlinear template

9. Execute: Output template (inputs: the two bipolar output)

10. Threshold template gives the result

11. Send back the result and jump to 1.

 
Table 2 
 It is worth mentioning that the fovea size of

the biological mammalian retina (about 50,000 neu-
rons) will be attainable with the current VLSI tech-
nology in the near future, thus a spatial decompo-
sition is not needed.

5.3. Temporal decomposition

The real world gives continuous input to the retina,
but the artificial test stimulus, a video flow, is frame
based. In the latter case the temporal decomposi-
tion is straightforward; the consecutive frames can
be computed independently if the output sampling
is correct. During the video stimulus a video-flow is
projected to the retina. A frame is shown for a con-
stant period of time until the next frame appears,
therefore the temporal signal is band limited. If the
output sampling is twice the input frame rate and
the system is linear the Shannon sampling theorem
is satisfied. This suggests that the double frame-
rate output sampling is sufficient for the transient
computation in the Retinal Unit case as well. The
used CACE1k prototype complex-cell chip does not
have any optical input therefore the input of the al-
gorithm is a frame based video flow, see Table 2.

In the first case, when the system perceives the
visual world, the decomposition should externally
sample the input. The sampling frequency would
be unacceptably high because (i) the bandwidth of
the input signal may be enormous and (ii) some
special transient cells can react to a fast movement.
Two solutions seem reasonable: one is to sample
the world with a computed sampling rate depend-
ing on the fastest neuron in the mammalian retina
and the input signal or to use an adaptive subsam-
pling method. The latter one could be implemented
using special purpose LAMs (local analog memories

on the chip), where the important events are stored
and later the whole transient can be approximated
from them. The local reconstruction can be done
via adaptive CNN-UM [Roska, 1999].

6. The CACE1k Chip Architecture

The architecture of the chip follows the design of
the standard one layer CNN-UM [Chua & Roska,
2002] chip: ACE4k [Espejo et al., 1996a; Liñan
et al., 2000], but its first-order cell core is replaced
by a second-order one, see Fig. 12.

The dynamic evolution law of the complex
cell CNN is the system of differential equations as
follows:

τ1
dx1,ij(t)

dt
= −h(x1,ij(t)) +

∑

kl∈S1

A11,ijklx1,kl(t)

+ a21x2,ij(t) + b1uij + z1,ij

τ2
dx2,ij(t)

dt
= −h(x2,ij(t)) +

∑

kl∈S1

A22,ijklx2,kl(t)

+ a12x1,ij(t) + b2uij + z2,ij

1 ≤ i ≤M , 1 ≤ j ≤M , 0 ≤ |uij | ≤ 1,

FSR : 0 ≤ |xij(t ≥ 0)| ≤ 1
(10)

where,

h(x) = lim
m→∞







m(x− 1) + 1 ≈ +∞, if x > 1

x, if |x| ≤ 1

m(x + 1)− 1 ≈ −∞, if x < −1

(11)

The hard-limiter function h(·) regulates the state so
that it stays within the +1 · · ·−1 interval. Variables
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Fig.12. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

Fig. 12. The processing structure of the complex-cell cellular neural network chip.

 36

 

1st CNN
layer node

2nd CNN
layer node

Analog Memories

Logic Unit

Logic Memories

Global Analogic Program control Unit

T
im

ing unit
I/O

 interface

Analog Prog. Reg.Logic Prog. Reg.Switch Config. Reg.
 

 
 
 
 
 
 
 
 
Fig.13. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

Fig. 13. Conceptual diagram of the complex-cell CNN units and its universal machine environment. The different connecting
lines and buses are represented by arrows.

u1, u2 are the independent inputs, b1, b2 are their
weight factors, respectively; z1,ij , z2,ij are space
variant bias maps. Variables x1, x2 denote the state
variables of the layers. Each xij corresponds to one
cell; it is one pixel of a M by N image if we con-
sider the system’s output as a picture. A11, A22 are
the weights of the intra-layer couplings, a12, a21 are
the inter-layer weights. It utilizes the so-called full
signal range model (FSR), where the voltage of the
state variable is always the same as the output y
[Espejo et al., 1996b].

The prototype CACE1k chip [Carmona et al.,
2002] consists of an analog programmable array pro-
cessor of 32 × 32 identical cells, surrounded by the
boundary conditions of the CNN dynamics. There
is also an I/O interface, a timing and control unit
and a program memory, see Fig. 13. The analog
instructions, template values and reference signals
need to be transmitted to every cell in the network
in the form of analog voltages. Finally, the timing
unit is made of an internal clock/counter that gen-
erate the internal signals which enable the processes
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of image up/downloading and program memory
access.

The elementary processor of the complex-cell
CNN visual microprocessor chip includes two cou-
pled continuous-time CNN cores belonging to each
of the two different layers of the network. The
synaptic connections between processing elements
of the same or different layers are represented by
arrows in Fig. 13. The base unit also contains a
programmable local logic unit (LLU) and local ana-
log and logic memories (LAMs and LLMs) to store
intermediate results [Roska & Chua, 1993]. All the
blocks in the cell communicate via an intra-cell data
bus, which is multiplexed to the array I/O interface.
Control bits and switch configuration are passed to
the cell directly from the global programming unit.

Each CNN node receives contributions from the
rest of the processing nodes in the neighborhood
which are summed and integrated in the state ca-
pacitor. The time constants of the two layers are dif-
ferent. The first layer has a scalable time constant
(ατcnn, where α is an integer between 1 and 16),
controlled by the appropriate binary code, while
the second layer has a fixed time constant (τcnn).
The evolution of the state variable is also driven
by self-feedback and by the feed-forward action of
the stored input and bias patterns. There is a volt-

age limiter for implementing the full signal range
property of the implemented CNN-UM. The state
variable is transmitted to the synaptic blocks, in the
periphery of the cell, where weighted contributions
to the neighbors are generated. Initialization of the
state X(0), input U and bias Z voltages are made
through a mesh of multiplexing analog switches that
connect to the cell’s internal data bus.

The prototype chip has been designed and fab-
ricated in a 0.5 µm single-poly triple-metal CMOS
technology. Its dimensions are 9.27×8.45 mm2. The
cell density is 29.24 cells/mm2. The time constant
is around τcnn ≈ 100 ns [Carmona et al., 2002].
The programmable dynamics of the chip permit the
observation of different phenomena of the complex
wave instructions. Table 3 summarizes the most rel-
evant data of the prototype chip.

A professional development environment, called
Aladdin Professional [Zarándy et al., 2003], is
built up around the previous single-layer CNN
universal machine vision chip (ACE4k). The
software environment supports several different
methods to reach the potential of the chip from a
high-level language to low-level direct commands.
The CACE1k chip is integrated into this environ-
ment [Petrás et al., 2003]. The hardware interface
between the PC and the CACE1k chip is illustrated

Table 3. Specification of the scalable time-constant complex-cell CNN-UM core.
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Technology 0.5 µm CMOS 1-P 3-M

Number of cells 32 x 32

Die area (+pads) 8.77+0.5 mm x 7.94+0.5 mm.

Array area 5.98 x 5.93 mm2.

Power supply voltage 3.3V (Logic "0"/"1" : 0/3.3V)

CNN time constant < 100ns

 
Table 3 
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Algorithm Example

Compute the simulated execution time

from the output sampling rate 

t=20 τ1=210 λ1=4

 τ2=30 λ2=8
Select the bigger space-constant:

set it to the maximum

scale down the other space-constant

increase the execution time

τ2=30 λ2=1

τ1=210 λ1=0.5
t = 160

Select the smaller time-constant

and link to the fixed-timing layer
scale down the other time-constant

decrease the execution time

τ2=1 λ2=1

τ1=7 λ1=0.5
t = 2

 

Table 4 
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Fig. 14. The complex-cell CNN-UM chip (CACE1k) and its prototyping system.
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in Fig. 14. Firstly the analogic program is down-
loaded to the Texas digital signal processor (DSP
module) through the standard PCI bus. The DSP
schedules the program and gives the interface be-
tween the PC and the platform holding the chip.
Secondly the digital platform generates the analog
signals to the CACE1k chip and contains the exter-
nal digital memory. Finally the analog platform re-
ceives the digital control signals and the analog data
for the direct control of the complex-cell CNN-UM
visual microprocessor.

7. Measurements of the

Decomposed Retina Model

The mammalian retina model has been presented in
Sec. 4, the decomposition principles in Sec. 5. This
section deals with the implementation of the decom-
posed model on the complex-cell CNN-UM, which
is outlined in the previous section. The decomposed
retina model is implemented as an analogic CNN al-
gorithm given in Table 2. The steps of the algorithm
are complex-cell template executions, each step im-
plements a single typical retina model block. These
are the outer retina, different bipolar units and the
output blocks. Two typical bipolar blocks are ex-
amined: a second-order in Sec. 7.3 and a desensitiz-
ing one in Sec. 7.4. The processing structure of one
retina channel is displayed in Fig. 15. It is worth
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Fig. 15. One decomposed retina channel. The double line
represents the second-order layer, the double arrow indicates
the desensitized synapse. The result of the decomposition is a
series of template operations, the main steps are represented
by boxes.

mentioning that the inhibitory subsystem is indi-
cated as one block in Sec. 4, but during the struc-
tural decomposition in Sec. 5.1 it is separated into
two parts. The bipolar model forms another bipo-
lar block, while the amacrine feed-forward layer is
implemented together with the corresponding gan-
glion layer.

The CACE1k chip can be programmed using an
assembler language, which contains additional high-
level instructions, including image loading, frame
grabber instructions and built-in image processing
functions. After the computation is done, the results
are read out from the chip’s local analog memories
and are displayed. The elementary program of the
chip is the template. It contains the weight factors
of the coupling between the cells and weights for
the input and the bias map.

A11 =







a1
−1,−1 a1

−1,0 a1
−1,1

a1
0,−1 a1

0,0 a1
0,1

a1
1,−1 a1

1,0 a1
1,1






;

A22 =







a2
−1,−1 a2

−1,0 a2
−1,1

a2
0,−1 a2

0,0 a2
0,1

a2
1,−1 a2

1,0 a2
1,1






; a21; a12

b1; b2; z1; z2; τ 1 : τ 2 = τ : 1; τ = 1 . . . 16

(12)

The operation of the array computer is com-
pletely determined by the 25 template values, the
initial states and boundary conditions. In Eq. (12)
the A11 and A22 matrices include the weights of the
intra layer connections of the slower and the faster
layer, respectively. The strength of the influence of
the second layer on the first is controlled by a21,
and a12 stands for the reverse case. Symbols b1, b2,
z1 and z2 are the weights of the independent inputs
and the space variant bias maps. The ratio of the
time constants of the two CNN layers are controlled
by τ1, while τ2 is fixed. An analogic algorithm is
made up of template executions, logic instructions
and spatial arithmetic operations.

Only the diffusion template is applied in the
computation of each of the retina dynamic blocks,
therefore the diffusion constant (λ) completely de-
termines the values of the template A, cf. Eqs. (13)
and (6).

A = λ2





0.25 0.50 0.25

0.50 −3 0.50

0.25 0.50 0.25



 , |λ| < 1 (13)
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Fig.16. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 
 

Fig. 16. The derivation of the common diagrams from the space-time measurement flow. The prism on the left-hand side
represents the space time flow and the resulting cuts are the different diagrams on the right-hand side.

In Figs. 18(a), 19(b) and 20(b) the display panel
is composed of four areas which are organized into
rows and columns. The drawing areas contain differ-
ent views of the outputs of the second, faster layer of
the CACE1k chip. Figure 16 explains the extraction
method, which produces the output diagrams from
the measured space-time flow. The fields in the left
column are amplitude-space diagrams. The right-
hand column of the panel contains space-time dia-
grams, where one column is taken and the samples
of that line of cells are depicted spatially at consec-
utive time instants. The plots in the upper row are
cross-sections of the diagrams of the bottom row
superposed on the stimulus displayed in red. The
horizontal line in the bottom-right and the vertical
line in the bottom-left shows the selected spatial po-
sition. The vertical line in the bottom-right shows
the time instant, at which the images displayed were
sampled and displayed on the left-hand side and the
vertical line in the bottom-left denotes the position
of the sampled column displayed on the right-hand
side.

7.1. Scaling

The CACE1k chip has some limitations, which is
due to the nature of the silicon implementation.
Only one of the time-constants can be adjusted.
The absolute weight of the connections has an
upper limit therefore the spatial-coupling (λ) is
limited. In simulation the execution time of the

system is uniform: 1 unit simulation time corre-
sponds to 1 ms measurement time. In the imple-
mentation the transient is stopped after a precom-
puted time but this timing is not directly connected
to the measurement time. This additional degree of
freedom enables us to overcome the limitation of the
hardware.

The structural decomposition has to store the
suspended transient state. The temporal decompo-
sition demands the higher output-sampling rate.
For example, if the input frame rate is 25 frames
per second (fps), then the output of the outer retina
is 50 fps and the output of the bipolar block should
be 100 fps.

The main idea of the scaling is to compensate
the changes of the space and time constants with the
running time of the template and so different chip
transient times can correspond to the same mea-
surement time. The absolute time constants of the
layers in a block are not important. Only their ratio
plays a role in the processing. If the feasible time-
constant is smaller than the prescribed value (this
is the typical case) then the execution time should
be decreased.

Each layer has a specific space-constant, which
is implemented by a diffusion template. This is the
only intra-layer coupling in these blocks. The ef-
fect of the diffusion depends on both the values of
the template, determined by λ, and the execution
time. The longer it runs and/or the bigger is λ the
more blurry is the output. If the λ parameter defines
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Table 4. The steps of the parameter scaling of each block and an example on the right-hand side.

 22

Section 6 

 

Technology 0.5 µm CMOS 1-P 3-M

Number of cells 32 x 32

Die area (+pads) 8.77+0.5 x 7.94+0.5 mm2.

Array area 5.98 x 5.93 mm2.

Power supply voltage 3.3V (Logic "0"/"1" : 0/3.3V)

CNN time constant < 100ns

 
Table 3 
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Algorithm Example

Compute the simulated execution time

from the output sampling rate 

t=20 τ1=210 λ1=4

 τ2=30 λ2=8
Select the bigger space-constant:

set it to the maximum

scale down the other space-constant

increase the execution time

τ2=30 λ2=1

τ1=210 λ1=0.5
t = 160

Select the smaller time-constant

and link to the fixed-timing layer
scale down the other time-constant

decrease the execution time

τ2=1 λ2=1

τ1=7 λ1=0.5
t = 5

 

Table 4 

 
an exceedingly large (not programmable) template
value, then an appropriate smaller λ value should
be chosen and decrease the input coupling. Corre-
spondingly the execution time must be increased
in order to maintain the same effect. However, this
affects the other layer as well, therefore the space-
constant of the other layers should also be modi-
fied keeping the ratio between the λ’s constant. To
sum up the required modifications, the parameters
of each block should be modified as described in
Table 4.

7.2. Outer retina measurement

In the modeling process we developed different
types of ganglion responses using the same outer
retina model.

The outer retina is responsible for enhancing
the edge information of the image. Figures 18(a)
and 18(b) illustrate the CACE1k computation of
the outer retina block. The input is a smaller and
a larger black rectangle in a gray field, as shown
in the last row in Fig. 17. The input frame is
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Fig. 17 Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

Fig. 17. Programming the CACE1k chip for outer retina model computation.
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Fig.18a. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

(a)
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Fig 18b. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 
 

(b)

Fig. 18. (a) CACE1k measurement result of the outer retina block of the retina model in Fig. 17. The transient response of
the system is displayed using the space-time representation described in Fig. 16. (b) CACE1k measurement of the outer retina
model snapshots of state xij(t) in two dimensions.

displayed for a certain time, then removed (erased
to zero). At the beginning of the flash-up of the in-
put we get an activity peak that decays soon, but
the final (steady) output depends on the size of the
black square. If the flashed square is small, a certain
level of activity is preserved inside the object until

the removal of the input. Otherwise, in the case of
a larger rectangle, only the edges of the object are
preserved. When the input is removed deactivation
follows. However, excitation occurs along the edges.
These correspond to the mammalian retina mea-
surements [Roska & Werblin, 2001].
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Fig.19a. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

(a)
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Fig. 19b. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

(b)

Fig. 19. (a) Programming the CACE1k chip for second-order bipolar model computation. (b) CACE1k measurement result of
a typical second-order bipolar block of the retina model. The transient response of the system is displayed using the space-time
representation described in Fig. 16.
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7.3. Second-order bipolar block

The template in Fig. 19(a) demonstrates the oper-
ation of a second-order excitation block. It contains
a bipolar layer with one strongly coupled amacrine
feedback layer. If different temporal characteris-
tics are needed, e.g. a larger overshoot ratio, the
desensitized-block should be used, see Sec. 7.4. At
the beginning of the flash-up of the input we get an
activity peak that decays.

7.4. The desensitizing effect

Some synapses possess a desensitivity feature. This
means that the synapse weight is decreasing over
time hence the synapse becomes less effective. Even
if the input flow is the same, the effect of the in-
put is smaller or even zero as time evolves. The fol-
lowing structure is especially useful to model this
phenomenon. The first layer plays the role of the
special synapse, which desensitizes.

The length of the two active periods is in-
fluenced by the time constant of the slower layer
τ1 (see Fig. 20). For bigger τ1, the longer is the
response.

7.5. Ganglion block

The ganglion block models a single ganglion cell
channel and the simple inhibition computation.
This subtracts the inhibitory path from the excita-
tory path. The first layer represents the inhibitory
path, computes the inhibition from a previously
computed bipolar block, see Fig. 16. The second
layer stands for the ganglion output.

8. Conclusions

The analogic CNN algorithm outlined in the present
paper mimics the mammalian retina from the
photoreceptors to the ganglion cells (the output
of the retina). The structure of the model is
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Fig.20a. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 

(a)

Fig. 20. (a) Programming the CACE1k chip for desensitizing bipolar model computation. The first layer models the special
receptor, which is desensitizing. (b) CACE1k measurement of the desensitizing effect with two different τ1 parameters: the
upper part of image τ1 = 13 and the lower part of image τ1 = 7. The transient response of the system is displayed using
the space-time representation described in Fig. 16. The output is a transient detection: the black input objects appear and
disappear when the scene is changing.
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Fig.20b. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 
 

(b)

Fig. 20. (Continued )

based on the retinal morphology and the param-
eters are tuned through comparisons with electro-
physiological measurements.

The prototype complex-cell CNN-UM chip is a
special tool to reproduce spatial-temporal effects.
The effects can be programmed as a CNN template
and the sequences of the stored templates define an
analogic algorithm. This chip opens new possibili-
ties in high-speed spatial-temporal wave dynamics
computations.

We demonstrated that at least second/third-
order dynamics is necessary for correct retinal mod-
eling. This paper has demonstrated the application
of the prototype complex-cell CNN-UM chip for
computing one retina channel on silicon. This is the
first step of the hardware implementation toward
the stored programmable neuromorphic CNN mam-
malian retina model. The multilayer CNN model
has been decomposed and scaled to meet the spe-
cific hardware requirements.
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Fig.21. Dávid Bálya, István Petrás, Tamás Roska, Ricardo Carmona, and Angel Rodrigez Vazquez 
 
 

 

 
 
 

Fig. 21. Programming the CACE1k chip for the ganglion block computation. The first layer represents the inhibitory path
and the second layer stands for the ganglion output.

The next generation 3-layer complex-cell chip,
under design, will have an optical input and differ-
ent adaptation effects (e.g. gain control) based on
the adaptive CNN-UM architecture. This will sim-
plify the outer retina block calculation and speed-up
the whole procedure.

The decomposed model can serve as the algo-
rithmic base for sensing aids, like retina prosthesis
and can transform the programmable complex-cell
visual microprocessors to retina-chips. These chips
can be reprogrammed even after a possible retinal
implementation and so open to any new discovery.
The retina, as a computational device, is a sophisti-
cated tool for multichannel preprocessing of a video
flow. It is anticipated that the results can be em-
bedded into several complex algorithms and appli-
cations targeting real-life applications, like object
classification, recognition, tracking, and alarming.
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Carmona, G. R., Jiménez Garrido, F., Domı́nguez
Castro, R., Espejo Meana, S. & Rodŕıguez Vázquez,
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& Rodŕıguez-Vázquez, A. [2000] “The CNNUC3: An
analog I/O 64× 64 CNN universal machine chip pro-
totype with 7-Bit analog accuracy,” Proc. IEEE Int.
Workshop on Cellular Neural Networks and Their
Applications (CNNA’2000), Catania, 0-7803-6344-2,
pp. 201–206.

Linsenmeier, R. A., Frishman, L. J., Jakiela, H. G. &
Enroth-Cugell, C. [1982] “Receptive field properties of
X and Y cells in the cat retina derived from contrast
sensitivity measurements,” Vis. Res. 22, 1173–1182.

Petrás, I., Rekeczky, Cs., Roska, T., Carmona, R.,
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