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In this paper we introduce a new experimental tool, a real-time programmable, spatial-temporal bi-
furcation test-bed. We present the experimental analysis of an antisymmetric template class. This 
class produces novel spatial-temporal patterns that have complex dynamics. The character of these 
propagating patterns depends on the self-feedback and on the sign of the coupling below the self-
feedback template element. We also show how to use these patterns for morphological detection. 

1 Introduction 

Numerical simulations of spatial-temporal chaotic systems require huge digital computing 
power, but still that is the usual analysis tool because it offers the advantage of easy ex-
perimentation via programming. Till now, the physically implemented chaotic circuits 
were “hard-coded”.  The new analogic cellular computing paradigm [5] places the spatial-
temporal dynamics into array computer architecture. Using the new ACE4K test-bed [1] it 
is possible for the first time to make programmable real-time experiments and uncover 
new complex dynamic behaviors in the Cellular Nonlinear Network [2–6]. 
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Fig. 1. Typical pattern classes. (a) The input and initial state, (b) snapshot of the output when the extra coupling 
is greater than zero, (c) snapshot of the output when the extra coupling is less than zero  (Chip measurements) 

The qualitative theory of nonsymmetrical feedback (A) templates had been first ex-
posed in [14].  Later, several papers have studied the operation of the CNN with non-
symmetric or sign-antisymmetric templates [7–9]. They described some necessary condi-
tions under which propagation effects occur or the solution is periodic. Other works in-
vestigated the pattern formation properties of the CNN [10] or studied the complex 
behavior [11-13] of the CNN. However, only a few works dealt with the case when there 
is a constant input. With constant input, we are able to localize the propagation effect into 
a certain region according to the extent of the input pattern. By using a constant input as a 
seed, different shapes can be generated depending on the properties of the template [15]. 
In the following we present an experimental analysis of a simple antisymmetric template 
in that case when we add only one extra coupling bellow the central element. We will in-
troduce the basic template class and show how the behavior of the CNN changes from 
stable to chaotic states at different values of that coupling. Figure 1 shows two basic pat-
tern classes that are generated by two different values of the key template element (the ex-
tra coupling is greater or less than zero). Throughout this paper, in the images black color 
means “+1” and white color means “-1”. 
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2 The Programmable CNN Model  

Throughout this analysis we will only consider CNNs with space invariant templates. In 
the model, (Equation 1) we have a nonzero input u that adds a constant value to each cell. 
This model is implemented as the main elementary instruction of the ACE4k chip, an im-
plementation of the CNN Universal Machine (CNN-UM) [5] architecture. Its stored pro-
grammability, via software makes it a new and ideal tool for us, as a test bed. 
Simulation.  The mathematical model of the simulation of the basic CNN dynamics is the 
following: 
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Fig. 2. (a) Hard nonlinearity g(.), (b) “Less hard” nonlinearity g’(.). 

We use a so-called full range model [6]. In Equation 1, xi,j denotes the state, Ak,l is the 
feedback template matrix, Bkl is the control template matrix, that describes the effect of 
the constant input ukl, and z is the offset or bias. The integration method throughout the 
simulation was an implicit Euler method. In all cases the boundary cells are constant, ex-
cept if explicitly noted differently.  

Programmable chip measurements – the experimental test bed.  The chip experi-
ments had been made on the new ACE4k test bed. On the chip, the ideal nonlinearity 
(Fig. 2a) is approximated by a “less hard” nonlinearity (Fig. 2b). When the state variable 
xij(t) reaches the saturation limits (+1, –1), the g’(x) term works against the increase or 
decrease and keeps the value of the state within the limits.  

3 Effect of a vertical coupling 

In the following we will show how extra coupling added to a vertically uncoupled tem-
plate changes the behavior of the system. At first let us consider the following one-
dimensional “CCD-like” template of which solution is periodic (see Fig. 3). 
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Fig. 3. The input & initial state and the time evolution for Template 1 and snapshots of the state. Observe that 
the propagation decays spatially after a few pixels, but the oscillation remains. The initial state is the same as the 
input. (Simulated results)  

During the time transient, cells along the right hand side border of the constant input 
pattern act like oscillators. The oscillators are only coupled horizontally and the rows op-
erate independently. The oscillation propagates to the right along the row starting from 
the triggering constant input (black pixels), and depending on the template values, it stops 
(dies) after a certain distance or endures until the edge of the array.  

Template 2 shows the general form of the nonsymmetrical template with an added 
vertical coupling. In the following we consider the s = – q case. By introducing an extra 
element r below of the central one, the homogeneous propagation and oscillation disap-
pears. We get some structured pattern. The character of the structure depends on the sign 
of the extra template element r. (See Fig. 1) 
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3.1 Positive vertical coupling (r > 0) 

If the value is positive, a solid pattern is formed, however its right border is oscillating. At 
the beginning, the input pattern propagates oscillating to the right until a certain extent, 
and then the global propagation stops but cells along the right border continue oscillating 
(at certain parameter setting the left border can also oscillate but not propagates). Typical 
snapshot of the pattern is shown in Fig 1b. The ruffles along the right border of the pat-
tern move up and right during the evolution – it is a periodic solution in time and space 
(See Fig. 4, corresponding template is Template 3). The exact values of the chip templates 
are slightly different from the template of the simulation, however the phenomenon can 
be reproduced quite well. 

 Template 3:
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Fig. 4. The input & initial state and the time evolution of the pattern when p is positive. Snapshots of the state 
(simulated results). The last snapshot shows the largest spatial extent of the generated pattern. There is no global 
propagation after this moment, only the ruffles travel along the right border of the pattern.  

Generally, there is no oscillation inside of the structure, only along its border. These 
local oscillations together form the main pattern that looks like the cross-section of waves 
on the surface of the water (see Fig. 4). 

3.2 Negative vertical coupling (r < 0) 

When the vertical coupling is negative a texture-like oscillating pattern is formed. This 
pattern has a unique structure. It consists of propagating horizontal line segments that 
spread to the right (See Fig. 5, corresponding template is Template 4). The spatial extent 
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of the propagation to the right direction changes as we change the parameters but the 
main characteristics remain the same. Typical snapshot is shown in Fig 1c. 

Let us define the bottommost row of the input pattern (black pixels) as the “first” 
row. The template produces a straight line for this row over a large domain of parameters 
values. The cells in this row are stable (saturated black pixels). The straight line serves as 
a constant driving for the cells in the next – “second” – row upward. The “second” row 
does not produce propagating pattern. Instead, we find a few neighboring oscillating cells. 
The third row also gives rise to periodic signal but with a different waveform and propa-
gating pattern. 
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Fig. 5. The input & initial state and the time evolution of the pattern when r is negative. Snapshots of the state 
(simulated). 

4 The effect of the central template element 

If we increase the central element (self feedback) then the generated pattern gets more 
and more irregular and it can become chaotic. Fig. 6 shows the different dynamic regions 
of the system parameterized by r and p of Template 5. 
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1.0
000
02.10
000

00
1.11.1

000
=

















=
















−= z
r
p BA

 

Stable region 
 Around the periodic and chaotic region there is a stable region with various stable pat-
terns. When p is high the effect of the input becomes dominant and therefore the output 
is almost the same as the input. When p is low (negative) the character of the system is 
diffusive. Between the two extreme values of p is a region where the effect of the input 
is less significant. Therefore the patterns are dominantly one-dimensional or there is no 
pattern at all. 

Periodic region 
The patterns propagate periodically and they have the form of solid wave-like and tex-
ture, as it is described previously in Section 3.  

Chaotic region 
 If p is large enough, the system can become chaotic. However, chaotic behavior may 
occur at smaller p, when r is less than zero. The reason for this can be that the constant 
line (the first row) becomes oscillating (See Fig. 6).  

As it can be seen from the results, there is a correlation between the time evolution of 
the selected cells of the CNN and the dynamic behavior of the whole array. The propaga-
tion preserves the history of the dynamics, therefore the output picture can be suitable for 
characterizing the system without cell data measurements.  
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Fig. 6. Partitioning of the r-p parameter space. The input & initial state is shown in the upper left corner. It is a 
three-pixel wide bar. The pictures in the different regions show few typical snapshots of outputs belonging to 
that region. Parameter p and r are in the [-2..2] region. 

5 The effect of the constant input and initial state 

An inherent property of the chaotic systems is the extreme sensitivity to the initial condi-
tion. In this section some results are presented related to this aspect. 

Periodic-chaotic transition.   Table 1 shows the effect of the different input patterns. 
The applied templates are the same for the two different inputs, i.e. the different behavior 
of the system is due to the difference of the input pattern. The first input is a black, five 
pixel wide vertical bar (periodic behavior) and the other input is a black, three pixel wide 
vertical bar (chaotic behavior). The input and the initial state are the same. The result 
shows that if the input is the five pixel wide bar then the transient of the cell is periodic. 
But if the input is a three pixel wide bar, the transient – and the propagating pattern too – 
is chaotic.  

The reason for the difference is that the local oscillators along the left and right bor-
der of the bar can influence each other. This can happen only if there is no stable (satu-
rated) vertical column of cells along the center of the bar. If the input is the three pixel 
wide bar there is no column of saturated (+1) stable cells in the bar. In the other case 
there is horizontally at least one pixel wide column of saturated stable cells. Thus, the os-
cillators along the left and right border of the bar are uncoupled. The cells were sampled 
in the second row.  

Stable-periodic transition. Table 2 illustrates that a single pixel perturbation can alter 
the general dynamic behavior of the system. The only difference between the two inputs, 
which are also the initial state, is that a single pixel is changed from black to gray in the 
middle of the right vertical edge of the bar. In the first case there is no propagation and no 
pattern. The second input however produces a periodic pattern. The boundary condition is 
periodic. 
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Template 6: Template for the simulation Template 7: Template for the chip measurement 
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Table 1. Different dynamical behaviors with the same template but with different input and initial state. The 
time evolution of one cell from the second row, logarithm of power spectrum of the same cell and the 2D trajec-
tory of the same cell and the neighbor are shown. 
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Table 2. Effect of one pixel perturbation. The circle denotes the location of the perturbation.  

Inputs Outputs Template 8: 
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6 Simulation time vs. real-time measurements 

A sophisticated simulation of chaotic systems takes several minutes (or even hours), es-
pecially when the dimension of the system is high. Using the new programmable ACE4K 
test bed it is possible to speed up the analysis process of the chaotic system by at least 
four orders of magnitude. 

7 Conclusion 

Both the simulations and the real-time experiments with the ACE4k test bed showed that 
if we add a single nonzero element r to a CCD-like antisymmetric template, the behavior 
of the system is significantly changes, complex dynamics occurs and characteristic pat-
terns are formed. At certain parameter settings – especially when the self-feedback p is 
high – the output pattern showed a unique chaotic pattern. The layout of the r-p parameter 
space showed characteristic structure. We expect that future works discover additional in-
teresting and useful properties of this template class and helps to understand more the 
complex dynamics. It would also lead to a new class of analogic spatial-temporal algo-
rithms for the dynamic detection of exotic and complex events. 
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