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ABSTRACT: The CNN as a curve shortening flow PDE computer is in-
troduced. It is shown that the state derivative of the CNN is the quasi-
linear function of the local curvature of the evolving shape. Experiments 
demonstrated that the hardware feasible CNN is suitable wave computer 
for morphological scale-space processing of shapes. 

1. Introduction 
The CNN [1-2] as an active media has been studied extensively. Several types of nonlinear 
waves has been reproduced and analyzed on this structure depending on the complexity of the 
elementary cells [3][5]. Recently many paper dealt with the CNN as a wave-computing device 
[4]–[7]. It has been proved to be a suitable computing frame for wave based image process-
ing. Some of these algorithms used autowaves for specific task [8] others used trigger waves 
for some kind of morphological processing in which the shape is deformed by the wave. 
These trigger wave-based processes were unidirectional i.e. if the spreading wave triggered a 
cell then it remained triggered [6]. However using an appropriate nonlinear diffusion operator 
this property can be violated yielding a qualitatively different behavior [9]. The phenomenon 
that is well known from the image processing literature is described by  
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where C is the boundary vector of coordinates (the curve), N
r

 is the outward normal, l is the 
curve parameter, t is the scale parameter. This equation is known as the geometric heat equa-
tion or curve shortening flow in differential geometry. Several work dealt with this flow (see 
for review e.g. [16]). It had been proved [10] that all closed contour collapses into a single 
point under this flow. During the evolution the shape (closed contour) collapses under its cur-
vature that give rise to obtain a hierarchy of shapes and thus a scale space for shapes is 
formed [11][12]. These scale spaces gave a suitable framework for recognition, classification 
and retrieval of shapes. Due to numerical and theoretical reasons Osher and Sethian proposed 
an approach in which the curve flow is embedded into a level set evolution of a surface [13]. 
This surface is evolved by its mean curvature. It was proved that the zero level set evolves 
according to the original curve flow.  

The CNN based nonlinear diffusion works similar way. The shape is given as the initial state 
of the array. The zero level set (or isointensity line) of the state is considered as the evolving 
contour of the shape during the evolution (see Fig. 1). Black (+1) color means “inside” white 
means “outside” of the shape. Using the discretized version of the following reaction-
diffusion operator A( ). =D∇2f( ). +aef( ).  the CNN computes the approximation of curve shorten-
ing flow in one transient.  

 



At the beginning of the evolution of the CNN the shape is implicitly embedded into a surface 
through the blurring of the diffusion process. As a result a linear transition zone is formed be-
tween the black and white regions. Cells belonging to the zone are in the linear region of (5). 
Cells being black or white are said to be saturated. They are in the saturation region of (5). 
The width of the linear region can be influenced by parameters D and ae. However the blur is 
spatially limited: the nonlinear character of the diffusion maintains the constant width and the 
gradient of the linear zone. This width is independent of the orientation and of the shape of 
the zone throughout the transient. When the desired curve smoothing is reached the transient 
is stopped. The CNN can be used as an effective parallel “curve shortening flow computer” 
and we can use the theories developed for scale-spaces for shape ([11][12]). 
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Figure 1 Evolution of a shape according to its local curvature. s=0.6,p= –1, the bound-
ary is zeroflux 

2. The state derivative and the curvature 
In the following we present validation of the relation between the local curvature of the edge 
contour of the evolving shape and the dynamics of the CNN. Let the CNN be: 
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where s>0, p<1, 4s+p-1>0, f  is same as (5). Let s=D/4, p=ae–D  
 
Proposition: 
The temporal derivative of the state variable of a linear cell being in the boundary region is 
the quasi-linear function of the local curvature of the isointensity line to which the cell belong  
provided that the gray level of the cell is close to zero and that the number of linear cells is 
greater or equal than 3.  

 ( )κFxij =& ,    where κ is the local curvature (3) 

Validation: 
Let us suppose that a qualitatively equivalent PDE representation exist of the autonomous 
CNN of eq. (2). Let us denote , u∈ R( tyxuu ,,= ) 2×Z→R 
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Let f =  is as in (5) [15]: εε
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Substituting (6) into (4) we get: 
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Observe that we have now two terms inside of the parenthesis: the first one is the product of 
the square of the vector norm of the gradient and of the second derivative of the nonlinearity. 
The second term is the product of the derivative of the nonlinearity and of the Laplacian of u. 
Using notation ηη ∂∂= /uu ,  the Laplace operator can be written as [16]: 22 / ηηη ∂∂= uu

 . (8) ηηηηηξξ κuuuuu +=+=∇ 2
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Figure 2 The definition of the moving local coordi-
nate system along the image contour. 

This curvature κ is the same for the surface u and for the embedded curve at the zero isointen-
sity level. This is because of u has a linear shape around the zero level set ( ). We 
know that  

0≈ηηu

 2222
ηuuuu yx =+=∇ , (9) 

where ux, uy denotes   he derivative along the x axis, y axis respectively. Substituting eq. (8) 
into (7) and using (9) we get the following one-dimensional equation: 
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Now we see that the behavior of the PDE depends on the local curvature κ. Inside of the lin-
ear region the influence of the curvature is dominant. Close to the edges of the linear region 
the importance of the curvature decreases while the square of the gradient determines the state 
derivative. Let us now suppose that u is in the linear region of the nonlinearity. Inside of this 
region ( ε−≤ 1u ) ( ) 0=′′ uf  and ( ) 1=′ uf . Using this we get 
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Let consider the case when u is zero which means it is on the zero isointensity line. Thus we 
can write:  

 ηηη κuDDu
t
u

+=
∂
∂ ≈ ηκuD ,      where 0<ηu  always. (12) 

The speed of a point on the isointensity line along the gradient can be computed 
)//()/(/ ηη ∂∂∂∂=∂∂ utut , thus we get κη ηηη DuDut +=∂∂ // . In this equation 

1/ <<ηηη uu  is a small number. As a result we see that the curve is moving according to the 
local curvature since η is the basis vector of our local coordinate system along the gradient: 
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The curvature of the surface u and the embedded curve are the same when u is on the zero iso-
intensity line. Of course relation (12) is valid only in the linear region of the CNN. 

From PDE to CNN 

To obtain the CNN representation we make the spatial discretisation of (11) with h=1, 
, : ( ) [ ]2/102/1. −=η ( ) [ ]121. −=ηη

 ( ) ieiiiiii
i xaxxxxxDx

dt
dx

+⎟
⎠
⎞

⎜
⎝
⎛ −++−+−= +−+− 1111 2

12
4

κκ . (14) 

Let ae =  p+4s  and D = 4s. Substituting this into (14) we get 
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In the following let us investigate the effect of κ. 

Case 1.If 0=κ equation (15) is the same as equation (6) in [14] in the linear region: 
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where  and . Thus theorems and results developed in that case can be 
used too.  

spp 2ˆ += sss == −+ ˆˆ

Case 2. If 0≠κ  then from equation (16)  
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If the curvature is zero then the 2D problem is reduced into orientation independent 1D prob-
lem and stability results [14] developed in the 1D case are valid. Moreover, the result strongly 
conjectures that if the curvature is not zero the contour region will move according to the sign 
and value of the curvature. Experiments support well the conjecture. 

 



3. Examples 
Disc deformation. In this experiment we measured the change of state derivative x of the 
CNN during the evolution. The initial state was a black disc. During the transient the disc was 
continuously shrinking with increasing speed until it disappeared. Meanwhile, the average 
magnitude of the state derivative in the linear transition zone got greater and greater. At the 
same time the real curvature of the disc was computed according to the relation κ =1/Rt, 
where Rt is the actual radius of the disc. Results are shown in Fig. 3 and Fig. 4. 
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Figure 3  The real curvature of the disc = 1/Rt (solid line) 
and the state derivative of the CNN (dashed line). 
(p=-1.25, s=0.6,r=0) 

      

initial state 
p=-1.25 
s=0.6 

     
time 230 1840 2760 2955 2980 

Figure 4 Measurement of the curvature. The first row contains the state derivative. The gray 
level encodes the curvature. White means negative curvature.  (p=-1.25, s=0.6,r=0, image 
size: 128×128) 
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Figure 5 Curvature smoothing in complex scene. Upper row shows the snapshots of the state 
derivative. The bottom row shows the output of the CNN.  (p=-1.1, s=0.6,r=0, image size: 
320×240) 

 



Complex shape deformation. In this experiment simulation shows the evolution of the 
shapes of an airport scene. Snapshots in Fig. 5 show that the contours are smoothed; however 
the shape is continuously distorted meanwhile. Observe that small-scaled structures disappear 
as the system evolves. The gray level shows the magnitude and the sign of the curvature. This 
makes it possible to use it as basic building block of complex feature detection algorithms. 
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