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Abstract – This paper discusses analogic cellular array
architectures that can also be used to approximate
partial differential equations (PDEs). Cellular arrays
are massively parallel computing structures composed
of cells placed on a regular grid. These cells interact
locally and the array can have both local and global
dynamics. The software of this architecture is an
analogic algorithm that builds on analog and logical
spatio-temporal instructions of the underlying
hardware, that is, a locally connected cellular nonlinear
network (CNN, [1]-[5]). Within this framework several
classes of “wave-type” PDEs could be approximated.
Examples will be shown for cellular wave-computing
phenomena on existing CNN Universal Machine (CNN-
UM, [2]) chips (e.g. [3]-[5]).

1 INTRODUCTION

It is well known that all PDEs can be approximated
to any desired accuracy by introducing finite
differences (and possibly discrete variables), i.e. they
can always be mapped to a cellular structure. On the
other hand, cellular arrays are computationally
universal ([9]-[11]) and from an engineering point of
view, they can be considered as dedicated
architectures for building a universal parallel
computer. In a recent summary we have discussed the
engineering view that an efficient parallel PDE
MACHINE, which can be built, must be a cellular
array (see e.g. [3]-[5]). In the sequel we will consider
PDE approximations leading to wave-based
phenomena on single and multiple-layer cellular
array architectures.

2 APPROXIMATING PDES: SINGLE-LAYER WAVE-
COMPUTING

Let us consider the following local PDE (a
generalized reaction diffusion-type equation class):
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where φ is the image intensity, φ0 represents the
initial state and ℑ1(.) and ℑ2(.) are nonlinear
functions.
Assuming that the right hand side of (1) is zero we
obtain the linear diffusion equation (at steady state
the Laplace equation has to be solved). Dropping
only the ℑ2(.) term results in a constrained linear
diffusion equation (ℑ1(.) calculates a “spatial

constrain”). If ℑ2(.) ≈ sigm(.) then a trigger-wave (or
when ℑ1(.) ≠ 0 a constrained trigger-wave) equation
can be derived.
Using a finite difference approach all these
equations naturally map to a cellular structure
described by nonlinear ODEs (a CNN architecture).
Let us consider an approximation that leads to
existing architectures [3]-[5]:
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where ℑ2(.) is replaced by g(.), f(.) is a sigmoid-type
function and ℑ1(.) is replaced by zij a linear
combination of the input in the nearest neighborhood
(plus an offset z0). By adjusting the parameters c0, c1
≥ 0 one can obtain different qualitative (e.g. linear
diffusion or nonlinear trigger-wave) behaviors [6],
[7]. Some experimental results can be found in Fig. 1-
2. While diffusion based filters can be primarily used
in noise filtering, trigger-waves [7] provide a good
approximation to some basic operations of
differential morphology [8]. The example in Fig. 2.
shows how flat dilation, erosion and reconstruction
can be implemented dynamically by these simple
nonlinear waves (see also nonlinear wave metrics
[6]).

Figure 1: Trigger-wave generation from initial patches:
a snapshot of the expanding wave front.

Figure 2 Trigger-waves generate multi-scale flat
dilation and erosion operations of differential

morphology.
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Breaking the “synaptic” positivity, symmetry or
isotropy in formulation (1) leads to patterns other
than simple binary patches (stripes, checkers, etc.).

3 APPROXIMATING PDES: MULTIPLE-LAYER WAVE

COMPUTING

Let us consider the following PDE formulation of a
coupled vector valued nonlinear reaction-diffusion
system (examples for nonlinear PDEs could be found
in [18]):
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where 1 2[ ( , ) ( , )]x t x tφ φr r
can be interpreted as the time

evolution of a vector valued image intensity

( 10 20[ ( ) ( )]x xφ φr r
is the original image), the vector

r
x

represents the spatial coordinates, the time variable t
can also be interpreted as the scaling parameter and c
is the conductance parameter in the diffusion term.
The right hand side of the equations consists of three
reaction terms: (i) α(.) is the “self-reacting term”; (ii)
β(.) is a “spatial constraint” (calculated from the
initial data); and (iii) γ(.) is the “cross-coupling”
term. Some proposed functions for g(.) are ([14]):
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Decoupling the two equations (γ1 = γ2 = 0) and
choosing α(ξ) = - ξ the PDE formulation is given in
the form of the so-called “biased” nonlinear
anisotropic diffusion equation (Nordström [15]) an
extended version of the Perona-Malik formulation
[14]. Gerig et. al [16] first proposed the application
of coupled nonlinear diffusion systems for vector-
valued image processing that has been further
studied by many others [18]. For our purposes –
motivated by silicon implementation – we focus on a
simplified version of (3) fixing the diffusion
parameter to a constant value.
In two spatial dimensions and assuming c = const.
and (3) reduces to:

1 1 1

1 1 1 1 0 1 2

2 2 2

2 2 2 2 0 2 1

( , , ) [ ( ( , , ))]

( ( , , )) ( ( , , )) ( ( , , ))

( , , ) [ ( ( , , ))]

( ( , , )) ( ( , , )) ( ( , , ))

d
x y t c div grad x y t

dt
x y t x y t x y t

d
x y t c div grad x y t

dt
x y t x y t x y t

φ φ

α φ β φ γ φ

φ φ

α φ β φ γ φ

− =

+ +

− =

+ +

(5)

After spatial discretization using the finite
difference approach one obtains:
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Finally, with α(.)= α0 and β(.) = β0 a simplified
form (with spatial symmetry and isotropy) of the
CNN complex cell equation ([19], [20]) is derived:
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Making φij explicitly depend on a state variable ξij
such as φij= f(ξij) = sigm(ξij) leads a good
approximation to the full-range CNN circuit model
([5], sigm(.) could be a piece-wise linear or
monotonic continuous smooth function playing the
role of a signal-limiter). The form of the
corresponding 2nd order CNN template is as follows:
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Analysis: It should be noted that the diagonal terms
could also be added resulting in a much better spatial
isotropy during the diffusion process. Symmetry and
spatial isotropy of these templates are due to the fact
that there are no convection terms ([12]) in the
original formulation. With these modifications the
sign and magnitude of the template entries in (8)
could be changed in any spatial directions. The time
constant is also fixed and equal for the two layers.
Having two different time variables (say t'' ≠ t') in (7)
leads to a "double time-scale" descritized system t'' /
t' = τ2 / τ1 ≠ 1 that has a practical relevance looking at
various second order models.
There is a number of parameter settings of special
interest that lead to very different qualitative
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1 INTRODUCTION

It is well known that all PDEs can be approximated
to any desired accuracy by introducing finite
differences (and possibly discrete variables), i.e. they
can always be mapped to a cellular structure. On the
other hand, cellular arrays are computationally
universal ([9]-[11]) and from an engineering point of
view, they can be considered as dedicated
architectures for building a universal parallel
computer. In a recent summary we have discussed the
engineering view that an efficient parallel PDE
MACHINE, which can be built, must be a cellular
array (see e.g. [3]-[5]). In the sequel we will consider
PDE approximations leading to wave-based
phenomena on single and multiple-layer cellular
array architectures.

2 APPROXIMATING PDES: SINGLE-LAYER WAVE-
COMPUTING

Let us consider the following local PDE (a
generalized reaction diffusion-type equation class):
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where φ is the image intensity, φ0 represents the
initial state and ℑ1(.) and ℑ2(.) are nonlinear
functions.
Assuming that the right hand side of (1) is zero we
obtain the linear diffusion equation (at steady state
the Laplace equation has to be solved). Dropping
only the ℑ2(.) term results in a constrained linear
diffusion equation (ℑ1(.) calculates a “spatial

constrain”). If ℑ2(.) ≈ sigm(.) then a trigger-wave (or
when ℑ1(.) ≠ 0 a constrained trigger-wave) equation
can be derived.
Using a finite difference approach all these
equations naturally map to a cellular structure
described by nonlinear ODEs (a CNN architecture).
Let us consider an approximation that leads to
existing architectures [3]-[5]:
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where ℑ2(.) is replaced by g(.), f(.) is a sigmoid-type
function and ℑ1(.) is replaced by zij a linear
combination of the input in the nearest neighborhood
(plus an offset z0). By adjusting the parameters c0, c1
≥ 0 one can obtain different qualitative (e.g. linear
diffusion or nonlinear trigger-wave) behaviors [6],
[7]. Some experimental results can be found in Fig. 1-
2. While diffusion based filters can be primarily used
in noise filtering, trigger-waves [7] provide a good
approximation to some basic operations of
differential morphology [8]. The example in Fig. 2.
shows how flat dilation, erosion and reconstruction
can be implemented dynamically by these simple
nonlinear waves (see also nonlinear wave metrics
[6]).

Figure 1: Trigger-wave generation from initial patches:
a snapshot of the expanding wave front.

Figure 2 Trigger-waves generate multi-scale flat
dilation and erosion operations of differential

morphology.
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Breaking the “synaptic” positivity, symmetry or
isotropy in formulation (1) leads to patterns other
than simple binary patches (stripes, checkers, etc.).

3 APPROXIMATING PDES: MULTIPLE-LAYER WAVE

COMPUTING

Let us consider the following PDE formulation of a
coupled vector valued nonlinear reaction-diffusion
system (examples for nonlinear PDEs could be found
in [18]):
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Decoupling the two equations (γ1 = γ2 = 0) and
choosing α(ξ) = - ξ the PDE formulation is given in
the form of the so-called “biased” nonlinear
anisotropic diffusion equation (Nordström [15]) an
extended version of the Perona-Malik formulation
[14]. Gerig et. al [16] first proposed the application
of coupled nonlinear diffusion systems for vector-
valued image processing that has been further
studied by many others [18]. For our purposes –
motivated by silicon implementation – we focus on a
simplified version of (3) fixing the diffusion
parameter to a constant value.
In two spatial dimensions and assuming c = const.
and (3) reduces to:
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Finally, with α(.)= α0 and β(.) = β0 a simplified
form (with spatial symmetry and isotropy) of the
CNN complex cell equation ([19], [20]) is derived:
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Making φij explicitly depend on a state variable ξij
such as φij= f(ξij) = sigm(ξij) leads a good
approximation to the full-range CNN circuit model
([5], sigm(.) could be a piece-wise linear or
monotonic continuous smooth function playing the
role of a signal-limiter). The form of the
corresponding 2nd order CNN template is as follows:
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Analysis: It should be noted that the diagonal terms
could also be added resulting in a much better spatial
isotropy during the diffusion process. Symmetry and
spatial isotropy of these templates are due to the fact
that there are no convection terms ([12]) in the
original formulation. With these modifications the
sign and magnitude of the template entries in (8)
could be changed in any spatial directions. The time
constant is also fixed and equal for the two layers.
Having two different time variables (say t'' ≠ t') in (7)
leads to a "double time-scale" descritized system t'' /
t' = τ2 / τ1 ≠ 1 that has a practical relevance looking at
various second order models.
There is a number of parameter settings of special
interest that lead to very different qualitative

behaviors in this symmetric second order system. We
have primarily examined and explored the following
simple cases ([20], see the appendix for wave-
computing examples):
(i) trigger-wave generation (diffusion process

in"saturation" at various speeds)
c1 > 0 ; c2 > 0 ; α1-(c1+1)>0; α2-(c2+1)>0;
γ1 = γ2 = 0; β1 = β2 = 0; τ2 / τ1 ≠ 1
(ii) traveling-wave, spiral-wave and auto-wave

generation (spatially interacting trigger-
waves)

c1 > 0 ; c2 > 0 ; α1-(c1+1)>0; α2-(c2+1)>0; γ1 ≠ 0;
γ2 ≠ 0; β1 ≠ 0; β2 = 0; τ2 / τ1 ≠ 1
(iii) retina effects (spatially interacting

receptive fields)
α1 ≈ c1 >0; α2 ≈ c2 > 0; γ1 > 0; γ2 < 0; β1 ≠ 0; β2
≠ 0; τ2 / τ1 ≠ 1

4 CONCLUSIONS

In this paper it has been discussed and illustrated
how a reaction-diffusion class of PDEs can be
approximated on analogic cellular architecture. The
focus has been put on formulations not exceeding the
synaptic and algorithmic complexity that can be
directly mapped and tested on available CNN-UM
chip prototypes (e.g. ACE4K [3], CACE1k [5]).
Currently measurement efforts are on-going using the
ACE16k [4] CNN-UM chip.
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Breaking the “synaptic” positivity, symmetry or
isotropy in formulation (1) leads to patterns other
than simple binary patches (stripes, checkers, etc.).

3 APPROXIMATING PDES: MULTIPLE-LAYER WAVE

COMPUTING

Let us consider the following PDE formulation of a
coupled vector valued nonlinear reaction-diffusion
system (examples for nonlinear PDEs could be found
in [18]):
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where 1 2[ ( , ) ( , )]x t x tφ φr r
can be interpreted as the time

evolution of a vector valued image intensity

( 10 20[ ( ) ( )]x xφ φr r
is the original image), the vector

r
x

represents the spatial coordinates, the time variable t
can also be interpreted as the scaling parameter and c
is the conductance parameter in the diffusion term.
The right hand side of the equations consists of three
reaction terms: (i) α(.) is the “self-reacting term”; (ii)
β(.) is a “spatial constraint” (calculated from the
initial data); and (iii) γ(.) is the “cross-coupling”
term. Some proposed functions for g(.) are ([14]):
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Decoupling the two equations (γ1 = γ2 = 0) and
choosing α(ξ) = - ξ the PDE formulation is given in
the form of the so-called “biased” nonlinear
anisotropic diffusion equation (Nordström [15]) an
extended version of the Perona-Malik formulation
[14]. Gerig et. al [16] first proposed the application
of coupled nonlinear diffusion systems for vector-
valued image processing that has been further
studied by many others [18]. For our purposes –
motivated by silicon implementation – we focus on a
simplified version of (3) fixing the diffusion
parameter to a constant value.
In two spatial dimensions and assuming c = const.
and (3) reduces to:

1 1 1

1 1 1 1 0 1 2

2 2 2

2 2 2 2 0 2 1

( , , ) [ ( ( , , ))]

( ( , , )) ( ( , , )) ( ( , , ))

( , , ) [ ( ( , , ))]

( ( , , )) ( ( , , )) ( ( , , ))

d
x y t c div grad x y t

dt
x y t x y t x y t

d
x y t c div grad x y t

dt
x y t x y t x y t

φ φ

α φ β φ γ φ

φ φ

α φ β φ γ φ

− =

+ +

− =

+ +

(5)

After spatial discretization using the finite
difference approach one obtains:
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Finally, with α(.)= α0 and β(.) = β0 a simplified
form (with spatial symmetry and isotropy) of the
CNN complex cell equation ([19], [20]) is derived:
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Making φij explicitly depend on a state variable ξij
such as φij= f(ξij) = sigm(ξij) leads a good
approximation to the full-range CNN circuit model
([5], sigm(.) could be a piece-wise linear or
monotonic continuous smooth function playing the
role of a signal-limiter). The form of the
corresponding 2nd order CNN template is as follows:
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Analysis: It should be noted that the diagonal terms
could also be added resulting in a much better spatial
isotropy during the diffusion process. Symmetry and
spatial isotropy of these templates are due to the fact
that there are no convection terms ([12]) in the
original formulation. With these modifications the
sign and magnitude of the template entries in (8)
could be changed in any spatial directions. The time
constant is also fixed and equal for the two layers.
Having two different time variables (say t'' ≠ t') in (7)
leads to a "double time-scale" descritized system t'' /
t' = τ2 / τ1 ≠ 1 that has a practical relevance looking at
various second order models.
There is a number of parameter settings of special
interest that lead to very different qualitative

behaviors in this symmetric second order system. We
have primarily examined and explored the following
simple cases ([20], see the appendix for wave-
computing examples):
(i) trigger-wave generation (diffusion process

in"saturation" at various speeds)
c1 > 0 ; c2 > 0 ; α1-(c1+1)>0; α2-(c2+1)>0;
γ1 = γ2 = 0; β1 = β2 = 0; τ2 / τ1 ≠ 1
(ii) traveling-wave, spiral-wave and auto-wave

generation (spatially interacting trigger-
waves)

c1 > 0 ; c2 > 0 ; α1-(c1+1)>0; α2-(c2+1)>0; γ1 ≠ 0;
γ2 ≠ 0; β1 ≠ 0; β2 = 0; τ2 / τ1 ≠ 1
(iii) retina effects (spatially interacting

receptive fields)
α1 ≈ c1 >0; α2 ≈ c2 > 0; γ1 > 0; γ2 < 0; β1 ≠ 0; β2
≠ 0; τ2 / τ1 ≠ 1

4 CONCLUSIONS

In this paper it has been discussed and illustrated
how a reaction-diffusion class of PDEs can be
approximated on analogic cellular architecture. The
focus has been put on formulations not exceeding the
synaptic and algorithmic complexity that can be
directly mapped and tested on available CNN-UM
chip prototypes (e.g. ACE4K [3], CACE1k [5]).
Currently measurement efforts are on-going using the
ACE16k [4] CNN-UM chip.
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