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ABSTRACT

The effect of the boundary conditions on the global dy-
namics of cellular neural networks (CNNs) is investigated.
As a case study one dimensional template CNNs are con-
sidered. It is shown that if off-diagonal template elements
have the same sign (i.e. the CNN is completely stable), then
the qualitative dynamics is not influenced by the boundary
conditions. If the off-diagonal template elements have op-
posite sign, then the boundary conditions behave as bifur-
cation parameters and can give rise to a very complex dy-
namic behavior. In particular they determine the equilib-
rium point patterns, the transition from stability to insta-
bility and the occurrence of several bifurcation phenomena
leading to strange and/or chaotic attractor.

1. INTRODUCTION

Cellular neural networks (CNNs) are analog dynamic pro-
cessor arrays [1]-[3]. A CNN can be described as a2 or
3-dimensional array of identical nonlinear dynamical sys-
tems (called cells), that are locally interconnected. This
property has allowed the realization of several high-speed
VLSI chips [4], [5]. In most applications the connections
are specified through space-invariant templates (that consist
of small sets of parameters identical for all the cells.)

The mathematical model of a CNN consists in a large set
of coupled nonlinear differential equations, that have been
mainly studied through extensive computer simulations. For
what concerns the dynamic behavior, CNNs can be divided
in two classes: stable CNNs, with the property that each
trajectory (with the exception of a set of measure zero) con-
verges towards an equilibrium point; unstable CNNs, that
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exhibit at least one attractor, that is not a stable equilibrium
point. The stability results are summarized in [6]: some ex-
amples of unstable CNNs presenting either periodic or non-
periodic (even chaotic) attractors are shown in [7]-[10].

With the exception of some general results, concerning
CNN stability, and of manuscript [11], most studies concen-
trated on the effect of the template on CNN dynamics, with-
out considering the influence of external inputs and bound-
ary conditions. In [11] it was shown that for certain class of
CNNs, the stability properties might depend on boundary
conditions.

In this manuscript we investigate the effect of constant
boundary conditions on CNN global dynamic behavior.
As a case study we consider a CNN described by a one-
dimensional template. By exploiting results presented in a
previous paper [12], we prove that if the elements, symmet-
ric with respect to the central one, have the same sign then
the CNN is completely stable for any external constant in-
puts and/or boundary conditions. If the above condition is
not verified, we show that boundary conditions behave as
bifurcation parameters and can give rise to a rather complex
dynamic behavior. In particular the boundary conditions de-
termine the equilibrium point patterns, the transition from
stability to instability and the occurrence of several bifurca-
tion phenomena leading to strange and/or chaotic attractor.
This extends the results presented in [11], where only the
stability properties were considered, and open the possibil-
ity of exploiting constant boundary conditions and constant
external inputs for designing new CNN functionalities.

2. ONE-DIMENSIONAL TEMPLATE CNN

We consider a CNN composed byN cells and described by
the following one-dimensional templates:

A = [A−2 A−1 A0 A1 A2] (1)
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Figure 1: Qualitative dynamic behavior of a CNN with
N = 4 , described by the templates, p,−s , with p = 1.1
and s = 0.9, as a function of the boundary conditionsY0

andYN+1. TheE subregions correspond to the existence of
at least one stable equilibrium point. ThePsubregions cor-
respond to the existence of only periodic attractors. TheT
subregions denote the existence of tori, whereas theC sub-
regions show a chaotic behavior.

B = [B−2 B−1 B0 B1 B2] (2)

We denote byY−1, Y0, andYN+1, YN+2 the left and the
right boundary conditions respectively, that are assumed to
be constant.

The CNN dynamics is governed by the following normal-
ized state equations:

ẋk = −xk + A0 yk + A−2 yk−2 + A−1 yk−1

+ A1 yk+1 + A2 yk+2

+ B0 uk + B−2 uk−2 + B−1 uk−1

+ B1 uk+1 + B2 uk+2 (1 ≤ k ≤ N) (3)

In the above equationsxk anduk represent the state and
the input voltage of thek − th cell respectively (u0, u−1,
u1, andu2 are assumed to be null). The output voltageyk

is defined as follows:

y−1 = Y−1 , y0 = Y0 , yN = YN , yN+1 = YN+1

yk = 1
2 (|xk + 1| − |xk − 1|) (1 ≤ k ≤ N)

(4)

3. ANALYSIS OF THE GLOBAL DYNAMIC
BEHAVIOR

As a first step, we characterize the class of one-dimensional
template CNNs, whose qualitative dynamics is not influ-
enced by constant external inputs and boundary conditions.
In order to do that we resort to the stability results presented
in [12], that allow us to state the following Theorem.

Theorem 1 : If the template elements of equations (3) sat-
isfy the constraintsA−2 A2 ≥ 0 andA−1 A1 ≥ 0, then the
corresponding CNN is completely stable (i.e. all the trajec-
tories converge towards an equilibrium point) for any exter-
nal constant inputs and boundary conditions.

Proof : it is readily derived from Theorem 1 and Theo-
rem 2 of [12].

If the conditions of the above Theorem are not satisfied,
then external inputs and boundary conditions might alter the
qualitative dynamics and play the role of bifurcation param-
eters.

For the sake of simplicity, we further restrict our attention
to the following opposite-sign template[s, p, −s] with s >
0 andp − 1 < s and we assume that the external inputs be
zero. The non-zero fixed boundary conditions are denoted
by Y0 andYN+1.

The results are summarized in Table 1 and Fig. 1. Ta-
ble 1 reports the set of stable equilibrium point patterns
that the CNN exhibits, as a function of the template pa-
rametersp and s and of the boundary conditions. It is
seen that, if we exclude the case|Y0| < 1 − (p − 1)/s,
|YN+1| < 1 − (p − 1)/s, the network always exhibits at
least one stable equilibrium point. In order to investigate the
occurrence of a complex dynamic behavior, we concentrate
on the parameter region corresponding to the absence of sta-
ble equilibrium points. Fig. 1 considers the template values
p = 1.1 and s = 0.9 and the boundary conditions vary-
ing between−1 and+1 (i.e. |Y0| < 1 and |YN+1| < 1),
in a CNN with four cells. We have also verified that qual-
itative results similar to those shown in Fig. 1 are obtained
using the same number of cells and different values of the
template parametersp ands.

The parameter region (Y0, YN+1) has been divided in sev-
eral subregions and for each of them the CNN dynamic be-
havior has been simulated, through a numerical algorithm.
The E subregions correspond to the existence of at least one
stable equilibrium point (1−(p−1)/s < |Y0|, |YN+1| < 1);
in such subregions we have also observed the coexistence of
stable equilibrium points and stable limit cycles, that origi-
nate through some heteroclinic bifurcations. In the P subre-
gions all the attractors are stable limit cycles; they normally
originate through heteroclinic bifurcations. The T subre-
gions correspond to the existence of tori, that bifurcate from
stable limit cycles through Naimark-Sacker bifurcations. In
the C subregions we have observed a chaotic behavior, that
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originates through the following routes: a sequence of pe-
riod doubling bifurcations, for the C subregions close to the
P ones; a sequence of Naimark-Sacker bifurcations (i.e. via
torus breakdown) for the C subregions close to the T ones.
The existence of chaotic attractors (that can also coexist) in
the C subregions has also been verified through the compu-
tation of the Lyapunov exponents.

Summarizing, we have shown that for certain classes of
templates (i.e. those not satisfying the conditions of The-
orem 1) the introduction of constant boundary conditions
may determine a complex and rich dynamic behavior, in-
cluding several bifurcation processes. We remark that sim-
ilar and even richer phenomena can be observed by intro-
ducing constant external inputs.

4. CONCLUSION

We have investigated the effect of constant boundary condi-
tions of CNN global dynamic behavior. As a case study
we have considered CNNs described by one-dimensional
templates. By exploiting the results presented in [12], we
have proved that if the off-diagonal elements have the same
sign, the CNN is completely stable for any external constant
inputs and/or boundary conditions. Then we have shown
that in a CNN described by an opposite-sign template, the
boundary conditions behave as bifurcation parameters and
can give rise to a rather complex dynamic behavior. In par-
ticular, we have observed the occurrence of several bifur-
cation processes: equilibrium point local bifurcations (that
determine the equilibrium point space-distribution); hetero-
clinic global bifurcations (that determine the transition from
stability to instability); Neimark-Sacker, period doubling
and torus breakdown bifurcations, leading to tori and/or
chaotic attractor.

The results presented in the manuscript open the possibil-
ity of exploiting constant boundary conditions and constant
external inputs for designing new CNN functionalities.
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Equilibrium points YN+1 <
−(p−1+s)

s
|YN+1 + 1| < p−1

s
|YN+1| < −(p−1)+s

s

Y0 <
−(p−1+s)

s

−1, {−1}n, +1,−1, {+1,−1}m, 1

−1, {−1}n, +1

−1, {−1}n, +1,−1, {+1,−1}m, 1

−1, {−1}n, 1

−1, {−1}n,−1

−1, {−1}n,−1

|Y0 + 1| < p−1
s

−1, {−1}n, +1,−1, {+1,−1}m, 1

+1,−1, {+1,−1}n, +1

−1, {−1}n, +1

−1, {−1}n, +1,−1, {+1,−1}m, 1

+1,−1, {+1,−1}n, +1

−1, {−1}n, +1

−1, {−1}n,−1

−1, {−1}n,−1

|Y0| <
−(p−1)+s

s

−1, +1,−1, {+1,−1}m, +1

+1,−1, {+1,−1}m, +1

−1, +1,−1, {+1,−1}n, +1

+1,−1, {+1,−1}n, +1

No Equilibrium

Points

|Y0 − 1| < p−1
s

+1, {+1}n,−1, {+1,−1}m, +1

−1, +1,−1, {+1,−1}n, +1

+1, {+1}n, +1

+1, {+1}n,−1, {+1,−1}m, +1

−1, +1,−1, {+1,−1}n, +1

+1, {+1}n, +1

+1, {+1}n, +1

Y0 > p−1+s
s

+1, {+1}n,−1, {+1,−1}m, +1

+1, {+1}n, +1

+1, {+1}n,−1, {+1,−1}m, +1

+1, {+1}n, +1
+1, {+1}n, +1

Equilibrium points: |YN+1 − 1| < p−1
s

YN+1 > p−1+s
s

Y0 <
−(p−1+s)

s

−1, {−1}n, +1, {−1, +1}m,−1

−1, {−1}n,−1

−1, {−1}n, +1, {−1, +1}m,−1

−1, {−1}n,−1

|Y0 + 1| < p−1
s

1,−1, +1, {−1, +1}n,−1

−1, +1, {−1, +1}n,−1

1,−1, +1, {−1, +1}n,−1

−1, +1, {−1, +1}n,−1

|Y0| <
−(p−1)+s

s

−1, {−1}n, +1, {−1, +1}m,−1

−1, {−1}n,−1

−1, {−1}n, +1, {−1, +1}m,−1

−1, {−1}n,−1

|Y0 − 1| < p−1
s

+1, {+1}n,−1, +1, {−1, +1}m,−1

−1, +1, {−1, +1}n,−1

+1, {+1}n,−1

+1, {+1}n, +1

+1, {+1}n,−1, +1, {−1, +1}m,−1

−1, +1, {−1, +1}n,−1

+1, {+1}n,−1

Y0 > p−1+s
s

+1, {+1}n,−1, +1, {−1, +1}m,−1

+1, {+1}n,−1

+1, {+1}n, +1

+1, {+1}n,−1, +1, {−1, +1}m,−1

+1, {+1}n,−1

Table 1:Equilibrium point patterns in a CNN composed byN cells and described by a 1D template[s, p, −s], withp−1 < s
and s > 0 and boundary conditionsY0 and YN+1. The two parametersn and m are nonnegative integer numbers, with
the constrain that the whole length of the string equals the numberN of cells. The string expression{a, b}0 represent
the null string, whereas the expression{a, b}n denotes a string obtained by repeatingn times the symbolsa and b, e.g.
{a, b}3 = a, b, a, b, a, b. III-593
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