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ABSTRACT

Based on studies of the mammalian retina, a bioinspired model for mixed-signal
array processing has been implemented on silicon. This model mimics the way in
which images are processed at the front-end of natural visual pathways, by means
of programmable complex spatio-temporal dynamic. When embedded into a focal-
plane processing chip, such model allows for on-line parallel filtering of the cap-
tured image; the outcome of such processing can be used to develop control feed-
back actions to adapt the response of photoreceptors to local image features. Beyond
simple resistive grid filtering, it is possible to program other spatio-temporal
processing operators into the model core, such as nonlinear and anisotropic diffu-
sion, among others. This paper presents analog and mixed-signal VLSI building
blocks to implement this model, and illustrates their operation through experimental
results taken from a prototype chip fabricated in a  CMOS technology.

I.  INTRODUCTION

Physiological and pharmacological studies of the mammalian retina show that this amazing
piece of wetware is not a simple phototransducer, but is responsible for very complex signal
processing. The retina operates on the captured visual stimuli at early stages in the process of
vision. Complex spatio-temporal processing encodes visual information into a reduced set of
channels [1]. The visual information flow is compressed into a data set of a manageable size, to
be delivered to the brain by the optic nerve. Although the mapping is retinotopic, it is not the
raw image brightness that is sent to the visual cortex, but a specific set of image features (closely
related with the spatial and temporal characteristics of the visual stimulus) which are obtained
and codified in the retina. The purpose of this early vision processing is to alleviate the work of
the central nervous system. The application of a highly regular computational task onto a large
set of simple data (e.g. picture brightness samples) is transferred to the retina, while the cortex
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activity is dedicated to higher level operations on more complex data structures. The massive
parallelism of this model inspires a feasible alternative to conventional digital image processing.
The limited bandwidth available for transferring signals between the camera array and the proc-
essor, and the limited computing speed achievable in a serial, or timidly parallel, processing
architecture, make these systems fail to match the tight requirements found in real-time image
processing. 

We are interested in local monitoring and control of the photosensing devices for contrast
enhancement. This capability improves the perceived sensation by extracting the reflectance
information from the acquired luminance matrix [2]. Data bottlenecks, arising mostly in trans-
ferring image samples from the camera to the processor, and in delivering the appropriate con-
trol signals to each photosensor, and the enormous amount of data to be processed, make it
hardly realizable at a practical frame rate by a conventional digital processing system. Yet, this
task is gracefully implemented in the biological retina. Concurrent processing and sensing elim-
inate data bottlenecks in the forward and feedback paths, and massively parallel processing pro-
vides enough computing power. Mixed-signal VLSI permits the implementation of massively
parallel multidimensional signal processing without serious area and power penalties. These
chips are called neuromorphic [3] as they mimic the way in which the layers of neurons in the
biological retina realize early vision.

An image acquisition and focal-plane processor chip must have, at every pixel, a reliable,
locally adaptive photosensing device (the opto-electronic interface) plus the analog and/or
mixed-signal core which realizes signal processing at the pixel-level. Concerning the distributed
processing facilities, the CNN universal machine architecture [4] has several advantages. It has
an analog front-end, which is compatible with the nature of the signals coming from the photo-
sensors, it is general-purpose and fully programmable, it has a distributed memory to store inter-
mediate results, and it has been proven to realize the type of processing required for sensor
control [5]. In addition, retinal features have been successfully modelled and simulated within
the CNN framework [6].

This paper presents, in the first place, a network model inspired on the layered structure of the
mammalian retina. Then the implementation of a fully-programmable 2nd-order neural core to
provide active wave computing at the focal-plane is shown. By setting the appropriate parame-
ters: such as interaction strengths, time constants and bias terms, an array of such processing ele-
ments can emulate some phenomena observed in the mammalian retina. At the end of the paper,
experiments in a  CMOS prototype of  cells, each one containing a 2nd-order
neural core, are displayed.

II.  BIOINSPIRED NETWORK MODEL

 A) A sketch of the mammalian retina

The retina is a peripheral component of the central nervous system responsible of acquiring
and coding the information contained in the visual stimuli. Specialized neurons develop a par-
ticular kind of massively parallel processing of raw sensory information. Visual stimuli trigger
patterns of activation in the layered structure of the retina, which are processed as they advance
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towards the optic nerve. These patterns of activation are analog waves supported by continuous-
time signals, contrarily to the spike-like coding of neural information found elsewhere in the
nervous system [7]. The biological motivation for this peculiarity can be found in the lack of
bandwidth offered by the spike-like neural impulses to handle the vast amount of data contained
in the visual stimuli. Fig. 1 displays a conceptual diagram of the functional architecture of the
mammalian retina [8]. In this scheme, light comes through the inner retina, all the way across
the eye, crosses the transparent layers of cells and is captured by the photosensors in the outer
retina. At the outermost end of the layered structure, the retinal pigment epithelium (RPE) is
found. This is a non-neuronal layer of cells that surrounds the outer segments (OS) of the pho-
toreceptors. It is the source for the regeneration of the pigment chromofore after its isomeriza-
tion by light. The following layer is composed of specialized photoreceptive cells of two types:
rods and cones. Rods are more light sensitive and responsible for scotopic vision. Cones are less
sensitive, more numerous, and are responsible forcolour vision. Their OS contain stacks of discs
with rhodopsin, the visual pigment. Rods and cones capture light and convert it into activation
signals. Their inner segments (IS) contain the rest of the cellular organelles. The next visible
layer is the outer nuclear layer (ONL), which contains the cell bodies of the rods and cones. The
outer plexiform layer (OPL) contains the axons from the horizontal cells and the dendritic trees
of bipolar cells. They receive synaptic inputs from the rods and cones. Bipolar cells carry the
activation signals across the retinal layers to the ganglion cells that interface the retina with the
optical nerve, in a trip of several micrometers [1]. The inner nuclear layer (INL) contains the cell
bodies of bipolar, horizontal and amacrine cells. The inner plexiform layer (IPL) contains the
axons of the bipolar and amacrine cells, and the dendritic trees of the retinal ganglion cells. The
ganglion cell layer (GCL) contains the bodies of the ganglion and displaced amacrine cells. The
optic nerve fibre (ONF) is built from the axons of the retinal ganglion cells.

The ganglion cells convert the continuous activation signals, proper of the retina, into spike-

FIGURE 1.    Schematic diagram of the functional architecture of the mammalian retina [8].
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coded signals which can be transmitted over longer distances by the nervous system. On its way
to the ganglion cells, the information carried by bipolar cells is affected by the operation of the
horizontal and amacrine cells. They form layers in which activation signals are weighted and
promediated in order to, first, bias photodetectors and, second, to account for inhibition on the
vertical pathway. The four main transformations that take place in this structure are: the pho-
toreceptor gain control, the gain control of the bipolar cells, the generation of transient activity
and the transmission of transient inhibition [1]. Briefly, captured stimuli are promediated and
the high-gain characteristics of the cones and the bipolar cells are shifted to adapt to the partic-
ular light conditions. These operations have a local scope and depend on the recent history of
the cells. Once adaptation is achieved, patterns of activity are formed dynamically by the pres-
ence or absence of visual stimuli. Also inhibition is generated and transmitted laterally through
the layers of horizontal and amacrine cells. As a result of these transformations, the patterns of
activity reach the layer of ganglion cells. At this point, the patterns are converted into pulse-
coded signals that are sent to the brain to be interpreted. In a sense, the layered structure of the
retina translates the visual stimuli into a compressed language which can be understood by the
brain in recreating vision.

 B) CNN analogy of the inner and outer plexiform layers

In the above description there are some aspects of the retinal layers that markedly resemble
the features of a cellular neural network (CNN) [9]: the 2D aggregation of continuous signals,
the local connectivity between elementary nonlinear processors, and the analog weighted inter-
actions between them. Also, the complete signal pathway in the retina has the topology of a 3D
network, or, more properly  network, a pile of 2D layers connected vertically. Motivated
by these coincidences, a CNN model has been developed which approximates the observed
behaviour of different parts of the mammalian retina. For instance, the outer plexiform layer
(OPL). The OPL is responsible for the generation of the first activation patterns immediately
after image capture. It has been characterized by experimental measurements, leading to a
model with three different layers [10]. These layers stand for the contribution of photoreceptors,
horizontal and bipolar cells. Each of them has the structure of a 2D CNN itself. Each of them
has its own interaction patterns (CNN templates) and its particular time constant. Cell dynamics
at each layer are supported by a first or a second order continuous-time core. 

The inner plexiform layer (IPL) has been also modelled within the CNN framework. The IPL
is responsible for the generation of the retinal output. A simplified model of the IPL has three
layers. Two of them represent the influence of the wide field amacrine cells excited by the input
signal, which in this case is the output of the bipolar cells, and there is a third layer that controls
the dynamic of the previous layers by means of feedback. As before, the three layers can be seen
as 2D CNNs with their own internal coupling and their own time constant [10].

Because of the relative simplicity of these models, a programmable CNN chip has been pro-
posed [11]. The programmable array processor consists of 2 coupled CNN layers. Each elemen-
tary processor contains the nodes for both CNN layers. The third layer, supporting analog
arithmetics, is implemented off-line by these analog cores, with the help of the local facilities
for analog signal storage. The evolution of the coupled CNN nodes of a specific cell  is
described by these coupled differential equations:

21
2
---D

C i j,( )
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 (1) 

where the loss term and the activation function are those of the FSR CNN model [12]:

 (2) 

and:

 (3) 

Fig. 2 depicts the block diagram of the vertically coupled CNN nodes. Synaptic connections
between cells are linear. Each CNN layer incorporates feedback connections, by means of which
the output of each cell contributes to the state of its neighbour, weighted by the elements

; a feedforward connection, weighted by , which regulates the contribution of
the cell’s input; a bias term , which can be different for each cell; and, finally, coupling con-
nections between both layers, weighted by  and . Each layer has its own time-constant

. Programming different dynamics in this CNN model is possible by adjusting the template
elements and the time-constants of the layers. The total number of synapses to be implemented
on each cell is 22, plus the 2 bias maps multipliers, which will be treated as a second input image
for each layer. 
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FIGURE 2.    Block diagram of the two coupled CNN layer nodes
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III.  2ND-ORDER CORE IMPLEMENTATION

 A) 2nd-order cell structure

The internal architecture of the basic processing cell presented here is similar to the structure
of the cells in the CNN universal machine [4]. However, in this case, the prototype cell includes
two different continuous-time CNN layers, as described in the conceptual diagram of Fig. 2.
Together with the two different analog CNN core blocks (Fig. 3(a)), local analog and logic
memories (4 LAMs and 4 LLMs) are provided at the pixel-level for the storage of intermediate
results, and a local logic unit (LLU) is built as well for pixel-level logic operations. The synaptic
connections between the analog processing nodes of the same layer are built around the cell
core, as shown, while inter-layer coupling, kept within the pixel scope in this model, is placed
inside the cell (represented by arrows between the processing layers in the diagram). All the
blocks in the cell communicate via an intra-cell data bus, which is multiplexed to the array 
interface. Control and cell configuration bits are passed directly from the control unit, located
outside the array processor. 

The internal structure of each CNN core is depicted in the diagram of Fig. 3(b). Each one
receives contributions from the rest of the processing nodes in the neighbourhood which are
summed and integrated in the state capacitor. The two layers differ in that the first layer has a
scalable time constant, controlled by the appropriate binary code, while the second layer has a
fixed time constant. The evolution of the state variable is also driven by self-feedback and by
the feedforward action of the stored input and bias patterns. There is a voltage limiter which
helps to implement the limitation on the state variable of the FSR CNN model. This state vari-
able is transmitted in voltage form to the synaptic blocks, in the periphery of the cell, where
weighted contributions to the neighbours’ are generated. There is also a current memory that
will be employed for cancellation of the offset of the synaptic blocks. Initialization of the state,
input and/or bias voltages is done through a mesh of multiplexing analog switches which con-

FIGURE 3.    Conceptual diagram of the (a) basic cell and the (b) internal structure of each CNN layer node.
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nect to the cell’s internal data bus.
Running complex spatio-temporal dynamics in this network requires following several ini-

tialization and calibration steps. First of all, acquisition of the input image and auxiliary masks
and/or patterns. To this purpose, the array  interface is directed to specific LAM locations
in a row-by-row basis. After that, the analog instruction, i. e. the set of synaptic weights required
for a specific operation, is selected and transmitted to all the cells in the array. Then, the offset
of the critical OPAMPs is extracted in a calibration step. After that, the time-invariant offsets of
the synaptic blocks are computed and stored in the current memories. Now the network is almost
ready to operate. The state capacitors and the feedforward synapses are then initialized by means
of the appropriate switch configuration, and the network evolution is run by closing the feed-
back loop in each processing element. Before stopping the network evolution, the final state is
stored in a LAM register for further operation.

 B) Single-transistor synapse

One of the most important blocks in the cell is the synaptic block. The synapse is, simply, a
four-quadrant analog multiplier. Its inputs are the cell state, , or input, , variables and the
corresponding weight signal, , while the output is the cell’s contribution to a specific neigh-
bouring cell. The multiplier is required to have voltage inputs, which can be easily conveyed to
any high-impedance node by a simple wire, and current output, which may be easily summed
by wiring all current contributions concurrently to a low-impedance node. Two important facts
for the implementation of the synaptic blocks are, first, that there is no need to have a strictly
linear relation between the weight signal, , and the output current, , and second, that the
weight signal does not change during the evolution of the network. Thus, any deviation depend-
ing on  is not a gain error, but an offset error, i.e. an error which can be cancelled by auto-
zeroing in a pre-processing calibration step.

Direct multiplication can be achieved by a MOS transistor operating in the ohmic region. Its
low-frequency large-signal characteristic is found in the first-order approach by (if n-type): 

 (4) 

where . A multiplication can be realized with this device as long as
 holds [13]. This alternative has several advantages, compared with

multipliers built with MOS transistors in weak inversion or in strong inversion saturation [14]:
it requires a reduced amount of area, because four-quadrant behaviour is achieved with one sin-
gle transistor. In addition, it has a better relation between bias power and signal power, thus lead-
ing to higher accuracy at lower power consumption, while in the saturation region the
information is carried by a small fraction of the actual currents flowing through the devices.
Third, the use of the ohmic region shows better mismatch figures than any other region [15].

The one-transistor synapse works as follows. Consider a p-type MOS transistor operating in
the ohmic region (Fig. 4). The transistor selected is of type p because the more resistive p-type
channel requires smaller currents (hence smaller power consumption) for the same transistor
lengths. Alternatively, for the same current levels, the required p-channel MOS is shorter than
its n-type counterpart. The source-to-drain current of a PMOS transistor in the ohmic region is
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given by:

 (5) 

where the threshold adopts one of these two analogue forms: 

 (6) 

 must be kept fixed in order to use  and  as single-ended input voltages, and to sense
 as the output of the synapse. For this purpose we can employ a current conveyor [16] at the

current input node of each cell. The current conveyor permits current sensing while maintaining
a virtual reference at node . All the synapses contributing to the same cell can be connected
to the same virtual reference. The only objection is that the impedance at this node must be well
below the parallel of the output impedances of all the synaptic blocks.

Back to Eq. (5), notice that the second term on the right side of the equation does not depend
on , therefore node  is a strong candidate to hold the cell state variable voltage. But 
must always be positive for the MOS transistor to operate above threshold, thus let  be com-
posed of a reference voltage , sufficiently high, and a superposed cell state signal :

 (7) 

And, in order to achieve four-quadrant multiplication,  must be permitted to go above and
below . Let us select  as the reference for the weight signal, , being:

 (8) 

Eq. (5) can then be rewritten as:

 (9) 

which is a four-quadrant multiplier with an offset term which is time-invariant (at least during
the transient evolution of the network) and does not depend on the cell state. Therefore, we have
arrived at a four-quadrant multiplier with single-ended voltage inputs and a current output, with
a offset which can be eliminated by a calibration step, with the help of a current memory:

 (10) 

FIGURE 4.    Multiplier using one single MOS transistor in the ohmic region.
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The limitations found to this behaviour are the upper and lower boundaries of the ohmic
region in strong inversion and the degradation of the mobility. The transversal electric field
pushes the carriers towards the semiconductor surface where they suffer scattering, which
renders a reduction in the speed of the carriers, thus degrading the mobility. This transversal
electric field depends on the gate voltage, thus the first summand in Eq. (10) is no longer linear
with . Combining the two limiting factors:

 (11) 

where  is a maximum effective gate voltage, beyond which
the distortion introduced by mobility degradation exceeds the linearity requirements.

For moderate linearity requirements, in a typical CMOS technology, the right hand side of
Eq. (11) becomes approximately equal to 1V. If  and  are assigned the same voltage

ranges,  around their reference values, then . With these

values of ,  and ,  must be kept 1.6V below . Thus,  must be

high enough to leave room for , but not too large because the weight signal will progress up

to  above . In addition, we have to provide a range for the current conveyor circuitry

to maintain a virtual reference precisely at , and for the circuits generating the weight volt-

ages, which will have a limited output swing. If we select , then they are 

above  before hitting the power rail at , which means one , approximately. With

this value,  results in . Finally, once the voltage ranges are fixed, a maximum current

per synapse is selected for meeting power requirements, in this case it will be . With these

values, the synapse is dimensioned. In this chip, it will be  wide and  long.

 C) Current conveyor

The current conveyor, required for creating a virtual reference node at which the synapses out-
puts can be sensed, is implemented in the circuit of Fig. 5. Any difference between the voltage
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at node  and the reference  is amplified and the negative feedback corrects the deviation.
The input impedance of this block is very low, which means that changes in the small-signal
input current  do not disturb appreciably the virtual reference at node , thus: .
The bias current is required to ensure that node  is always the source of transistor . At
the same time, this circuit permits the injection of a nearly exact copy of the input current at the
state node, whose voltage range differs from that of the weight signals. The only drawback of
using this circuit is that a voltage offset, , at the input of the differential amplifier —which
can be implemented with a simple OTA as it drives a very high impedance node, the gate of

— results in an error of the same amount in the reference voltage implemented at node .
Since the main contribution to the offset is random, this error will be distributed all along the
array resulting in mismatched synaptic blocks which can degrade performance, e. g. anisotropic
evolution of the network yielded by a symmetrical propagation template. As we are impelled to
use small-size devices, in order to achieve the highest cell-packing density possible, the random
offset can be quite large. In order to avoid this, an offset calibration mechanism has been imple-
mented at the critical OTAs (Fig. 6). The input-referred offset voltage, , has been taken out
of the OTA block symbol. Without the offset cancellation circuit (the shadowed area), at low
frequencies, and considering a negligible output conductance, the output of the OTA is:

 (12) 

Considering the error cancellation mechanism, when  is ON, then the inputs are short-
circuited, , and  is connected as a diode,with its source-to-drain is in steady-state:

 (13) 

After some time,  is turned off and, except for a remnant switching error, the current 
is memorized by means of the voltage stored in . Thus, the total current injected into the
load is free of any offset:

 (14) 

 D) Current memory

The offset term of the synapse current must be removed for the output current to accurately
represent the result of a four-quadrant multiplication. To this purpose, before the CNN opera-
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tion, but right after the new weights have been up-loaded, all the synapses are reset to
. The resulting current, which is the sum of the offset currents of all the synapses con-

currently connected to the same node, is memorized. This value will be subtracted on-line from
the input current during the network evolution, resulting in a one-step cancellation of the errors
of all the synapses. The validity of this method relies on the accuracy of the current memory.
For instance, in this chip, the sum of all the contributions will range from  to . On
the other hand, the maximum current signal of the synapse is:

 (15) 

which means a total current range of . If an equivalent resolution of  is intended, then,
. In these conditions, our current memory must be able to distinguish 

from the . This represents an equivalent resolution of . In order to achieve such
accuracy levels, a so-called  current memory will be employed [17]. As depicted in Fig. 7,
it is composed of three stages, each one containing a switch, a capacitor and a transistor. At the
beginning, while ,  and  are ON, the current  is divided into ,  and , and:

 (16) 

Switches controlled by ,  and  are successively turned off. Each time that one of these
switches turns off, the voltage stored in its associated capacitor changes, e. g.  changes from

 to , because of charge injection. The other transistors have to accommodate to
absorb the error, as the sum of currents is still forced to be , and thus  and  change to:

 (17) 

when  turns off. Correspondingly,  changes to:

 (18) 

when  falls. Finally  is turned off, and  ends in . The final current, , is:

 (19) 
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and substituting here the values of ,  and , we find that:
 (20) 

the only error left is that corresponding to the last stage. The former stages do not contribute to
the error in the memorized current. If the  block is designed to store the most significant bits
in the first capacitor, and the less significant bits in the last one, then the error in the memorized
current can be made quite small. Consider that the total resolution of the current memory is .
Let us assume that  is conducting the  most  significant bits of the current , then 
conducts the next , and  conducts the rest. Thus, for the last stage an effective resolution
can be defined:

 (21) 

If the error in the memorized current has to be kept below , and , then:

 (22) 

And this is the design equation which relates the geometric aspect of transistor , through ,
with the magnitude of the storage capacitor, via . Once we have ,  and  it may be
easily derived that:

 (23) 

One might think that adding more stages to the current memory will endlessly increase accu-
racy. However, there is one factor that has not been addressed yet. As the order of the memory
increases, the smaller the currents become which have to be sensed by the last stages. There
comes a point in which the leakages from the capacitors of the first stages are of the size of the
current to be memorized by the last stages, thus making it impossible to reach a steady state cur-
rent which corrects the previous errors. This problem worsens as temperature rises. For instance,
at 70C leakages can introduce changes in the memorized current in the order of . If
the dynamics of the current memory require several  to settle (because of the use of large
capacitors and due to the tiny currents involved) the memorized current will display an error that
is quite above the initial estimation.

 E) Time constant scaling block

The time constant of the CNN layer is defined as , the ratio between the state
capacitor and the transconductance  obtained by multiplying the current factor of the syn-
apse, , times the weight signal voltage . This time constant depends on the
specific set of templates being implemented in the CNN. The state capacitor is composed by the
gate capacitances of the 11 synapses driven by the cell’s state. As  in this
technology, this makes a total of . In the most favourable case, when every neighbour,
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even the cell itself, is contributing the maximum amount of current to the cell state, a parallel
stack of 18 synapses, with a transconductance of  is found. This represents a mini-
mum CNN time constant of .

Scaling the time constant of one of the CNN layers involves either modifying the value of the
state capacitor or of the synapse transconductance. For the first alternative, it will be necessary
to implement a regulable capacitor. If a continuously regulable capacitor is pretended, it does
not seem to be easy to realize. If a capacitor with a discrete set of capacitances is adequate, an
area of 16 times  will be required to implement a  time constant ratio.

The second alternative, scaling the transconductances of every synapse contributing to the
cell, can be achieved with a current mirror. Scaling up/down the sum of currents entering the
cell is equivalent to scaling up/down the transconductances of the synapses, and thus, to scaling
down/up the time constant of the CNN core. A circuit for continuously adjusting the gain of a
mirror can be designed based on the active-input regulated-Cascode current mirror [18]. The
major disadvantage of using this circuit is its strong dependence on the power rail voltage. The
power rail voltage can deviate further more than  in a densely packed -cell parallel
array processor chip. This will cause a large mismatch in the time-constants of the different cells
in the layer. An alternative to this is a binary programmable current mirror. Its output current is
given by:

 (24) 

where , ,  and  are the decimal values of the control bits. In this case, 4 bits will be
more than enough to program the required relations between  and . The mismatch between
the time constants of the different cells is now fairly attenuated by design.

A new problem arises related with the placement of the scaling block in the signal path. There
are several alternatives. First, the scaling block, the binary weighted current mirror, can be
placed after the offset cancellation memory, as in Fig. 8(a). The problem is that any offset intro-
duced by the scaling block is incorporated to the signal path without possible cancellation. The
second alternative (Fig. 8(b)) is to place the scaling block before the offset cancellation memory.
This means that the S3I memory will have to operate over a wider range of currents, thus com-
plicating its design and surely degrading its performance. Our choice, depicted in Fig. 8(c) has
been to place the scaling block in the memorization loop. The current memory will operate on
the unscaled version of the input current, and any offsets associated with the scaling blocks will
be sensed and memorized to be cancelled on-line during the network evolution.

The resulting CNN core is shown in Fig. 9 [19]. In this picture, the voltage reference gener-
ated with the current conveyor, the current mirrors and the  memory can be easily identified.
The inverter, , driving the gates of the transistors of the current memory is required for sta-
bility. Without it, the output node, , will diverge from the equilibrium. The operation of this
circuit is as follows. Before running the CNN dynamics, the current offsets of all the synapses
are injected to the virtual reference at node . This current is scaled down to one  of its
value by means of the adjustable current mirror formed by  and . The arrow over 
stands for the binary programmability of this device. The value of  is:

 (25) 
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Then, if all the transistors of the  memory are conducting, that is, if ,  and  are ON,
then the negative feedback loop makes  conduct the same current as .  is also
adjustable so as to make  and the current memory work with the same current ranges as in
the input stage. The rest of the operation has been already described. The current memory stores
successively the remaining most significant bits of the input current, plus the errors accumu-
lated. When this is done, the CNN loop can be closed and the output current  represents the
scaled sum of the contributions, with the state-independent errors substracted.

FIGURE 8.    Alternatives for the placement of the scaling block.
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The critical aspects of this circuit are related to the feedback loop formed by , ,
, inverting amplifier  and transistors , when sensing the offset current. During this

process output current  is zero because the current path to the state capacitor is open. Once the
input current has been established,  can be considered a bias voltage. First of all, it must be
taken into account that during the three different phases in which the loop is closed ( ,  and

 ON,  OFF and  and  ON, and, finally,  and  OFF and  ON) the values of
 and  change, so the stability conditions must hold for any possible set of values. Con-

sidering the small-signal equivalent circuit for this loop, a three-pole system is found (Fig. 10),
with pole frequencies: ,  and . The near-
est pole, at node , will be employed to compensate the loop for stability. As  and 
decrease for the latest phases of the current memorization, the loop will be more stable because
this causes the loop dc gain, , to decrease and  to grow, breaking away from  and thus
increasing the phase margin. Therefore, the worst situation will occur when ,  and  are
ON, and thus the circuit is designed to be stable in these conditions. It is also important that 
is kept reasonably low, otherwise it will displace the unity-gain frequency, , towards the
value of the inversion . This means a loss of phase margin, and can compromise the loop
stability.

Leakage currents can degrade the  memory operation especially as the operation temper-
ature rises. Although the negative feedback moves the circuit towards the correction of the
errors, it may be too slow to settle at a value before leakages modify the position of the equilib-
rium point. Therefore, compensation must be kept under a limit to avoid slowing down the loop
dynamics in excess.

IV.  EXPERIMENTAL RESULTS

 A) Prototype chip data

A prototype chip has been designed and fabricated in a standard  CMOS technology
with single-poly and triple-metal layers. Fig. 11 displays a microphotograph of the chip. It con-
tains a central array of  2nd-order cells of the type formerly described (this prototype
does not incorporate the adaptive photosensors). Surrounding the array, a ring of boundary cells,
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FIGURE 10.    Simplified schematics of the feedback loop and its small signal equivalent.
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implementing the contour conditions for the CNN dynamics, is found, together with the neces-
sary buffers to transmit digital instructions and analog references to the array. On the lower part
of the chip, the program control and memory blocks can be found. The last major subsystem is
the I/O interface including S/H batteries, decoders, counters and different sequential logic. The
whole system fits in , including the ring of bonding pads. One single process-
ing element occupies . The resulting cell density is . In order
to cautiously handle this data, it is important to notice that the area occupied by the cell array
scales linearly with the total number of cells, which is not the case with the overhead circuitry,
which tends to be a smaller fraction of the total chip size as the number of cells rises. The power
consumption of the whole chip has been estimated at . Data I/O rates are nominally

. The time constant of the fastest layer (fixed time constant) is designed to be under
. The chip can handle analog data with an equivalent resolution of  (measured).

The peak computing power of this chip is of . Here, OPS means analog arithmetic
operations per second. In a time constant, , each CNN core performs 12 multiplications
and 11 additions. Thus, for each cell, with two cores, there are 46 operations within each cell in
100ns. Having 1024 processing cells, the chip can reach  when running the network
dynamics. The computing power per unit area —considering the main array alone— is

 and per unit power is .

 B) Retinal behaviour emulation

Image processing algorithms can be programmed on this chip by setting the configuration of
switches and by tuning the appropriate interconnection weights — the programming interface
is digital while the internal coding of the weights is analog. Propagative and wave-like phenom-
ena, similar to those found at the biological retina, can be observed in this chip by just setting
the proper coupling between cells in the same or in different layers. For instance, it can be pro-

FIGURE 11.    Microphotograph of the prototype chip.
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grammed to propagate spots in the faster layer towards the border of the array. These spots trig-
ger a slower set of waves in the first layer. The wavefronts generated at the slower layers can be
employed to inhibit propagation in the faster layer, thus generating a trailing edge for the waves
in the fast layer. This produces similar results to the wide field erasure effect observed in the IPL
of the retina. Fig. 12 displays a 3-D plot of this effect. These pictures have been generated with
the prototype chip by running the network dynamics, from the same initial state, during succes-
sively larger periods of time. This permits the reconstruction of the actual evolution of the state
of the cells during the CNN dynamics. Another interesting effect observed in the OPL of the
retina [10] is the detection of spatio-temporal edges followed by de-activation of the patterns of
activity. This phenomenon has also been programmed in the chip (Fig. 13).
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FIGURE 12.    Wide field erasure effect, represented in 3-D.
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FIGURE 13.    Spatio-temporal edge detection and de-activation (fast layer).
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V.  CONCLUSIONS

Based on a simple but precise model of the real biological system, a feasible efficient imple-
mentation of an artificial vision device has been designed. Tailored analog building blocks for
fully programmable focal-plane image processing are provided. A prototype chip containing a
network of  CNN nodes have been designed, fabricated and successfully tested in
standard CMOS technologies. Different wave-computing algorithms can be implemented in this
chip by simply programming the network dynamics with only a few parameters: connection
weights, time constant ratio, bias map and boundary conditions.
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