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Abstract

In this paper, a new algorithm for the cellular active contour technique called
pixel-level snakes is proposed. The motivation is twofold: On the one hand a
higher efficiency and flexibility in the contour evolution towards the boundaries of
interest is pursued. On the other hand a higher performance and suitability for
its hardware implementation onto a CNN chip-set architecture is also required.
To this end the algorithm proposed in [9] is completely revised and its limitations
are discussed. Based on this analysis the contour evolution is improved and a new
approach to manage the topological transformations is incorporated. Further-
more new capabilities in the contour guiding are introduced by the incorporation
of inflating/deflating terms based on the balloon forces for the parametric active
contours. The entire algorithm has been implemented on a CNN-UM chip set
architecture (ACE4K [10], ACE-BOX [1]) for which the results of the time per-
formance measurements are also given. To illustrate the validity and efficiency of
the new scheme several examples are discussed including real applications from
medical imaging.
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1 Introduction

Since they were introduced by Kass et al. [8] active contours have be-
come a popular tool in multiple image processing tasks like segmentation,
tracking and modelling. An active contour is defined as an elastic curve
which deforms controlled by image features and shape constraints to adapt
itself to the boundaries of the objects of interest. The active contour tech-
niques are usually classified as either energy-based (parametric models, [8])
or level-set based (implicit models, [4], [11]). The first, also called snakes, are
physically motivated and represent the contours explicitly as parameterized
curves in a Lagrangian formulation. The second are based on the theory
of curve evolution and implement the curves implicitly as a level set of a
higher order function which evolves according to an Eulerian formulation.
This classification obeys to the contour representation, implementation and
capabilities from the operation point of view (particularly, the capability to
manage changes in the contour topology). Nevertheless almost all of them
have in common high computational requirements which might limit their
use in those tasks needing fast time response. This inconvenience is allevi-
ated by the development of new strategies for the numerical simulation of the
equations which govern the dynamic of the curve evolution [2, 20, 25, 3, 15]
which usually lead towards a compromise between processing speed and flex-
ibility in the contour evolution.

As a difference with the commented strategies the cellular active con-
tours (CAC) appear originally intended to resolve the high computational
cost inherent to the classical active contour techniques. They are based on a
pixel-level discretization of the contours and on a massively parallel compu-
tation on every contour cell which lead to a high speed processing without
penalizing the efficiency of the contour location.

Up to the present two different cellular active contour approaches have
been proposed. In [17] an active wave computing approach is introduced.
This consists of a topographic non-iterative region propagation technique
where the contours are defined by the boundaries of trigger waves. Therefore,
as in the level-set approaches, the contour evolution is implicitly represented
as a wavefront propagation. This approach has demonstrated a high flex-
ibility in the contour evolution and like the implicit models gives a simple
solution to the changes of topology required when two different wavefronts
collide. Nevertheless in this kind of techniques sophisticated stop criteria are
usually required to conveniently control the wave-front propagation which
may increase considerably the computation complexity in real applications.

In [9] the called pixel-level snakes (PLS) are addressed. They represent a
topographic iterative active contour technique where the contours are explic-
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itly represented and evolve towards (local) minimal distance curves based on
a metric defined as a function of the features of interest. In the PLS method
contours are guided by local information and regularizing terms dependent
on the contour curvature.

Since PLS were introduced in [21], the associated algorithm has under-
gone different improvements and new capabilities were incorporated in sev-
eral steps. In [22], a new guiding term derived from the contour itself was
embodied allowing to keep smooth the contour shape and providing a higher
robustness against noise. In [9], new modules were included allowing to han-
dle the topological transformations usually required when multiple active
contours are evolving simultaneously.

Keeping in mind the characteristics of the commented CAC techniques,
we propose an improved algorithm for PLS which combines the contour evo-
lution of the previous PLS schemes with the region propagation addressed
in [17]. The result is a novel approach which performs a better contour evo-
lution and a more efficient management of the topological transformations.

All the steps of the proposed algorithm consist of simple local dynamic
convolutions and morphological hit and miss operations together with simple
arithmetic and logical operations. Therefore the proposed system meets the
requirements to be implemented on a CNN chip-set architecture based on
the CNNUM concept [19]. The algorithm has been already tested on the
64x64 CNNUM chip (ACE4K, [6, 10]) within the ACE-BOX computational
infrastructure [1]. All the examples used to illustrate the capabilities of the
algorithm are experimental results from the on-chip implementation.

The remainder of the paper is organized as follows: In Section 2, a brief
revision of the PLS strategy and the main operations of the algorithm are
addressed. In Section 3 the new algorithm is introduced showing the con-
tributions and comparing the efficiency of the proposed algorithm with the
previous one. In Section 4 the projection on the CNNUM is described. In
Section 5 some real-life examples of application are discussed and finally, the
main conclusions are drawn in Section 6.

2 Pixel-Level Snakes

In the context of PLS, the active contours are represented as sets of 8-
connected activated pixels in a binary image called contour image. This has
the same dimensions as the image containing the objects or regions to be
defined. The contour evolution consists on an iterative process of activa-
tion and deactivation of the contour image pixels along the four cardinal
directions. These operations are driven by external information extracted
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from the image under processing and internal information derived from the
contours themselves. The result is equivalent to contour shifts towards final
shapes and locations according to the requirements of the guiding informa-
tion.

The guiding information can be interpreted as scalar potential fields ex-
tended to all pixels of the image under processing. This includes:

e The external potential, that takes lower values near the edges. This
will guide the contours to the boundaries of the objects into the image.

e The internal potential, extracted from the contour image. This will try
to keep smooth the contour shape.

External Potential
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Guiding Information K
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Contour Evolution
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Topologic Transformations
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Fig. 1: Diagram showing the main modules and their interactions for a PLS al-
gorithm.

Conceptually the PLS consist of three different modules which interact
dynamically (Fig. 1):

1. A module responsible to extract the information to guide the contour
evolution. This includes the derivation of the internal potential from
the contour image and the combination with the external potential
from the image under processing.

2. A module dedicated to the contour evolution. This consists of an
iterative operation of pixel-to-pixel shift of the contours driven by the
guiding information.
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3. A module undertaken to handle the possible collision and the required
topologic transformations between contours.

In the following, the main operations to be performed by the modules in
Fig. 1 are introduced. A comprehensive description can be found in [23].

2.1 Guiding information

The components of the so-called guiding forces along the direction under
processing are derived from the external and internal potential matrices by
simple directional gradient operations. A positive force should indicate a
valid direction for the contour evolution. However, in a pixel-level iterative
technique only the sign of the component of the guiding forces along the
direction under exploration is actually needed. Therefore, in this stage a
thresholding operation is also included. These operations are gathered into
the so-called guiding force extraction module (GFE). In short, the output of
this GFE module will represent a binary map with activated pixels in those
locations where the potential is decreasing along the direction under study
(thus the contour evolution is allowed towards those directions). Fig. 2 illus-
trates the operations in the GFE module by means of an example of contour
evolution based on external potential.

The external potential should be defined in such a way that the bound-
aries of interest coincide with the valleys of the potential field. This is
strongly dependent on the particular application and represents an exter-
nal input to the PLS algorithm. On the other hand the internal potential
is derived directly from the active contours. The internal potential estima-
tion (IPE) consists of a recursive low-pass filtering or diffusion operation
acting on the contour image. The result is a real-valued array characterized
by lower potential values at the cavities of the contour and higher outside
[22, 23]. Therefore a directional gradient operation acting on this array will
originate positive internal forces which push to reduce the local curvature
and therefore to smooth the contour shape [22]. This idea is illustrated in
Fig. 3, where one contour is guided by only this kind of internal information.
It is well known that a planar closed contour whose evolution relies only on
the local curvature will adopt a circular shape and finally will collapse. This
behavior is observed with the proposed internal potential estimation which
demonstrates the curvature dependence of the approach.
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Fig. 2: (Upside): Guiding force extraction (GFE) from an external potential field.
Lower potential is represented by lower intensity. By means of directional
gradients the component of the guiding forces for each direction is ob-
tained. The sign of these forces will indicate the correct direction to move
the active contour. (Downside): Several snapshots of the contour evolu-

tion guided by only the external information.
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Fig. 3: (Upside): Generation of the internal potential for the PLS. Lower poten-
tial is represented by lower intensity. A directional gradient operation
will originate forces proportional to the local curvature which guide the
contour evolution in order to regularize its shape. (Downside): Several
snapshots of the contour evolution guided by only internal information.




2 Pixel-Level Snakes 9

Therefore, the combination of both external and internal potential would
provide more robustness to the contour evolution against noise, as it is illus-
trated in Fig. 4. There is not an exact rule to determine both the number
of diffusion steps and the influence (weight) of this kind of potential respect
to the external potential. Like in classical active contour techniques they
must be determined heuristically. However, a great precision in the internal
potential estimation is actually not required. The main objective of the in-
ternal potential use is to reach a better behavior in the processing of noised
information. If the internal potential is weakly weighed with regards the
external potential, anchored pixels can appear in the locations perturbed
by noise. However this situation leads to a sharp contour shapes and, as a
consequence, to the increasing of the internal potential which eventually can
overcome the noised external potential.

Fig. 4: (Upside): Contour evolution based on noised external potential (additive
Gaussian noise 0 = 100, into the usual range for gray-scale images, [0,
255]). (Downside): Contour evolution based on noised external potential
combined with internal potential.
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2.2 Contour evolution

To produce the desired contour evolution a directional contour expan-
sion (DCE) of the active contours followed by a directional contour thinning
(DCT) are carried out along the direction under processing. The process is
driven by the GFE output in such a way that the contour evolution can only
affect those locations which coincide with activated pixels in the GFE output.
In summary, the goal after each cycle (four iterations, one for each cardinal
direction) is to obtain new well-defined contours slightly shifted and/or de-
formed based on the guiding information from GFF in order to come closer
and fit themselves to the boundaries which define the regions of interest.

2.3 Topologic transformations

When the number of active contours does not coincide with the number
of objects into the scene the collision between different contours (or different
parts of the same contour) may occur. Due to the characteristics of evolution
and the nonparametric nature of the pixel-level snakes the required changes
of topology can be suitably approached by simple inspections of the contour
map. This capability notably increases the set of tasks where the PLS can
be applied. In [9] a solution to manage the changes of topology supported by
local CNN-operations was proposed. The approach is based on preventing the
collisions between contours and a controlled split of these contours followed
by merging of the new ones before the collision. In the following Section, this
approach is analyzed and its limitations are discussed. Then, a more efficient
strategy to approach the changes of topology is proposed.

3 Improved PLS algorithm

The algorithm of PLS addressed in [23] has demonstrated a good per-
formance in multiple applications where active contour techniques are fre-
quently used. Nevertheless, in its initial form, it has some drawbacks and
exceptions which reduce the efficiency of the algorithm. In this Section, these
limitations and exceptions are analyzed and illustrated by examples. Then
several changes are proposed which result in a higher performance of the
PLS. The modifications affect the three modules described in the previous
Section. In the sequel the contributions are discussed and compared to the
previous structure.
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3.1 Guiding information

Numerous refinements have been proposed in the literature to improve the
robustness and stability of the active contour techniques. Working towards
this direction in [5] a balloon force has been introduced to the parametric
snake model. This new term comes from represent an anisotropic pressure
potential that controls the evolution of the contours helping them to trespass
spurious isolated weak image edges and counteracts their tendency to shrink
(due to the internal forces). The snake becomes more robust with respect
to the initial curve position and the image noise. However, in a practical
situation, it has to be decided whether an inflationary or deflationary force
is required. Both implicit and pixel-level active contours can easily incor-
porate this kind of guiding terms. The Implicit models implement them
as geometric-independent advection terms [14]. The pixel-level snakes can
effectively inflate (deflate) the contours by adding higher (lower) potential
terms to those locations inside the closed curves with respect to those situ-
ated outside. The process is mainly supported by means of a weighted hole
filling operation as it is illustrated in Fig. 5. The sign of the weight constant
will determine the inflating or deflating nature of the potential. Note that
to define correctly the balloon forces the contour locations must be weighted
with the higher potential.

@ ‘ Deflating Potential Compression Forces

i,

Inflating Potential Expansion Forces

Contour Image Region Image

Fig. 5: Generation of inflating/deflating potentials for the PLS. Lower potential is
represented by lower intensity. A directional gradient operation will orig-
inate forces guiding the contour evolution outwards (inflation) or inwards
(deflation).
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Therefore this kind of potential term can help to put the active contour
closer to the boundaries of interest from locations where the external forces
are too weak (Fig. 6).

Fig. 6: (Upside): Several snapshots of the evolution of an active contour super-
posed to the external potential field. (Downside): Combination of the
external potential and inflating potential. While the external forces are
too weak (far from the boundaries of interest) the inflating forces domi-
nate the contour evolution. When the active contour comes closer to the
object, the external forces become strong enough to control the evolution.

3.2 Contour evolution

As it has been commented in the previous Section, the contour evolution is
based on iterative operations of expansion and thinning extended along the
four cardinal directions conducted by the binary map from GFE. Given a
direction of processing, a directional contour expansion (DCE) is carried out
only in those locations where the local potential is decreasing (i.e. associated
with positive guiding forces). The subsequent directional contour thinning
(DCT) operates on the DCE binary output deactivating those pixels situated
in locations of locally decreasing potential which do not entail a rupture of
the contour connectivity. The combination of both operations produces the
contour evolution towards decreasing potential. However this is somehow
restricted mainly for two reasons (Fig. 7):

1. The expansion and the thinning operations affect different pixels and
therefore rely on different guiding information. Note in the example in
Fig. 7 that the pixels activated by DCE are different to those deacti-
vated by DCT.
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2. The DCE operation is constrained to only contour duplications: Only
the expansion is produced from those locations where the contour is
one-pixel wide along the direction of processing. This is required to
avoid the generation of ill-defined contours as a consequence of the
different control for DCE and DCT.
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(a): GFE Output  (b): Contour Image (c): DCE Output  (d): DCT Output

Fig. 7: Example of a contour evolution for the processing of the North direction.
(a): Output of the GFE module. (b): Contour image before the DCE
and the DCT operations. (c): Contour image after the DCE operation.
The expansion affects those locations with positive guiding forces (dark
pixels in the GFE output) whose activation produces only two-pixel wide
contours. (d): Contour image after the DCT operation. The thinning only
affects those contour pixels with positive guiding forces whose deactivation
does not provoke connectivity breakpoints.

This approach leads to an inadequate contour evolution when the contour is
anchored in one or more pixels. This ill operation is illustrated in Fig. 8. In
the example, a contour evolves towards the North direction as a consequence
of some potential field. The contour pixel filled in gray represents an unac-
cessible location (e.g. a noisy pixel). Since the contour expansion can only
produce two pixel-wide contours the evolution is deviated with a non-null
angle. This deviation is what we call the scattering effect. Fig. 13 shows a
real experiment for a similar situation of that illustrated in Fig. 8 where the
predicted scattering effect appears.

The scattering effect has some important consequences. The presence
of noise into the external potential image can lead to the appearance of an-
chored contour pixels, which produces sharp contour shapes. These should be
smoothed by the internal potential which is dependent on the local curvature.
Nevertheless, the effect of the internal potential is weakened by the scatter-
ing effect which leads to concavities with higher curvature radios. Another
important limitation strongly related with the scattering effect, appears in
those applications where evolutions along very narrow cavities are involved.
The restricted contour expansion impedes to reach deep locations along cav-
ities with less than five pixels of width, as it is illustrated in Fig. 9. The
example shows a contour flowing to the North along a four pixel-wide cavity
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Fig. 8: Illustration of the scattering effect. Black pixels represent contour pixels.
The gray pixel represents a location unaccessible for the contour. There-
fore the contour is forced to surround that location resulting in a deviation
in the trajectory of the contour evolution (scattering).

based on the rules which define the DCE and the DCT operations. In Fig.
14 the results from an equivalent real experiment are showed.
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Fig. 9: Illustration of the evolution along narrow cavities. Black pixels represent
contour pixels. The gray pixels define the cavity. Based on the rules for
the DCE and DCT is not possible the contour evolution along cavities
with less than five pixel of width.

As we have seen the scattering effect is a consequence of the restriction in
the contour expansion (only two pixel-wide contours can be generated from
this operation) and this constraint is a consequence of the different control
for the expansion and the thinning steps. We have noted that a constrained
thinning operation is actually not required. Since both the expansion and the
thinning operation operate consecutively along the same direction the pixels
affected for the contour thinning are mainly those pixels which have enforced
the contour expansion of the previous step. Therefore the non-constrained
thinning operation will lead to the effective contour evolution and makes the
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requirement of only contour duplications in the DCE stage unnecessary. In
Fig. 10 the operation of the new contour shift approach is illustrated.
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Fig. 10: Example of a contour evolution for the processing of the north direction.
(a): Output of the GFE module. (b): Contour image before the DCE
and the DCT operations. (c): Contour image after the DCE operation.
The expansion affects those locations with positive guiding forces (dark
pixels in the GFE output) neighboring to some contour pixel along the
direction under processing. (d): Contour image after the DCT operation.
Now the thinning operation is only constrained to keep well-defined the
continuity of the contour.

This small but critically important change in the contour evolution relies
only on one external constraint (the DCE driving) leading to a more efficient
operation. Furthermore, since the contour expansion is not restricted to du-
plications only, the scattering effect disappears as it is illustrated in Fig. 11.
In Fig. 13 an equivalent on-chip experiment is showed.

Therefore the contour evolution is more robust against noise because an-
chored contour pixels provoke sharper cavities than in the previous version
of the algorithm generating a higher internal potential into the cavities. Fur-
thermore, the inhibition of the scattering effect also allows the active contours
to evolve along deep and very narrow cavities as it is illustrated in the exam-
ple in Fig 12. Note that the pixel level snakes cannot flow along cavities with
less than three pixels of width. This is a inferior limit to allow well defined
contours. In Fig. 14 it is showed how with the new approach the contours
can flow along narrower cavities than with the initial formulation.

With the modifications described above not only a higher efficiency in the
contour evolution is achieved but also the PLS algorithm is also simplified.
Now, the DCE module is supported by only one 3x3 directional template per
direction instead of the four operations required for the structure in [9] or
the 5x5 directional template in [22].
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Fig. 11: Illustration of the scattering effect. Black pixels represent contour pix-
els. The gray pixel represents a location unaccessible for the contour.
Therefore the contour is forced to surround that location but now the
trajectory of the contour trajectory is not deviated.
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Fig. 12: Illustration of the evolution along narrow cavities. Black pixels represent
contour pixels. The gray pixels define the cavity. Based on the new rules
for DCE and DCT is possible the contour evolution along cavities with
at least three pixel of width.
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Fig. 13: In this example an active contour evolves towards lower intensities. One
pixel in the upside of the contour becomes anchored based on the guiding
information which causes the scattering effect from the original PLS
algorithm (upside row). This effect disappears in the improved version
since the new contour evolution relies on a non-constrained thinning
operation and on a more flexible directional contour expansion (downside
row).

Fig. 14: The scattering effect impedes the contour evolution along very narrow
cavities with the original algorithm (upside row). Since the contour
expansion is not restricted to only duplications the contour evolution
along very narrow cavities becomes more efficient with the new approach
(dowside row).
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3.3 Topologic transformations

The method to manage topologic transformations addressed in [9] is sup-
ported by two main operations: Avoiding all uncontrolled collisions between
contours and controlling contour splits and merges during the evolution to
provoke the required change of topology. In order to make clear the main
shortcomings of this method we now describe the explicit steps of the imple-
mentation proposed in previous studies [9, 23].

The first operation to carry out the topologic transformations should
consist of avoiding the possible collision between contours relying on a pre-
estimation of the locations where a collision could occur. This action is
relatively easy to implement because the contours move as the effect of ac-
tivation and deactivation of pixels in the contour image. Thus, the contours
evolve pixel to pixel, which allows to estimate the contour location and shape
in the next iteration. The collision point detection (CPD) is carried out by
a simple pattern recognition which takes as input the binary contour image
and returns a binary image with white pixels in those locations where a col-
lision between contours can appear in the next iteration. Therefore, by the
projection of this binary map onto the output of the GFE module, the pixel
activation can be avoided on those conflictive locations and consequently the
contour collision will be prevented. In a physical context, the effect of this
operation is equivalent to the generation of an infinite potential barrier be-
tween contour pieces to avoid the collision.

Now it is possible to take advantage of these collision points to realize a
controlled split of the old contours and merging of the new ones. The opera-
tions to be implemented in order to approach the topologic transformations
are illustrated with an example in Fig. 15 and are as follows:

1. The set of collision points which can guarantee a correct contour sep-
aration by only local operations are selected.

2. The split of the old contours is carried out by deactivating the neigh-
boring pixels in the direction under processing (vertical direction in the
example), with respect to those collision points selected in the previous
step.

3. The generation of the new contours are made by activating the neigh-
boring pixels in the direction under processing (horizontal direction in
the example), with respect to the collision points selected in the previ-
ous step.
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Fig. 15: Example illustrating the operation in the management of topological
transformations proposed in [9] (North direction). First, those collision
pixels which can support the topological transformation by interacting
only with their first order neighborhood are selected. Following the split
of the old contours and the merge of the new ones are carried out.

This strategy to tackle the topological transformations has demonstrated
a good performance in multiple applications [23]. Nevertheless, as it can be
seen in the example of Fig. 15, not all the collision points can guarantee
either the correct split of the old contours or the correct merge of the new
ones based on the described operations. Therefore some required topological
transformations might not be attended. This is illustrated in Fig. 17 with an
example where an active contour evolves to define five different objects. In
this example changes of topology are required, however they are not attended
because the proper definition of the new desired active contours cannot be
guaranteed with the described local operations supported by any of the pre-
dicted collision points.

On the other hand, the changes of topology are based on possible collision
points instead of real collisions between contours which have been previously
prevented. Therefore there might be certain situations where topological
transformations occur even though they are not actually required as it is
illustrated in the example in Fig. 18. This ill-function can lead to a bad
operation when a contour evolves along very narrow cavities and two pieces
of a contour come very close to each other. If the separation between them is
only one pixel wide, an undesired topologic transformation can provoke the
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stop of the contour evolution as it is illustrated in the example of Fig. 19.

The commented strategy represents a compromise between complexity
and accuracy in the management of topological transformations into the con-
tour context where a considerable effort is required to keep well defined the
resulting contours. This requirement is dramatically relaxed into a region
propagation framework where the contours are defined as frontier pixels of
regions into the image space [17]. When two contours (or two parts of one
contour) collide the collision points no longer belong to the set of frontier
pixels of the associated regions and consequently they do not belong to the
set of contour pixels. We propose to handle the changes of topology within
the region propagation context by means of the three operations indicated in
Fig. 16. The contours are transformed into regions by means of a hole filling
operation followed by a one-step morphological opening (erosion-+dilation).
In the last step the region contours are obtained by a binary edge detection
which extracts the set of frontier pixels of the regions.

Contour Image O‘O

HOLE FILLING "

8

-

OPENING ®

%
!
“
g

mpe

Contour Image

Fig. 16: Flow diagram of the operations for the new topologic transformations
module.
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This strategy to manage the topologic transformations has a clearly higher
performance than that reported in [9] and handles properly the changes of
topology whenever they are required as it is illustrated in the example of the

Fig. 17.

Fig. 17: (Upside row): In this example, the required topological transformations
cannot be approached by only local operations based on the proposal
in [9]. (Downside row): The new proposal enforces changes of topology
whenever they are required.

On the other hand, since now the handling of the topologic transformation
is supported by real collision between contours, the changes of topology are
attended only when they are actually required (Fig. 18).

Fig. 18: (Upside row): In this example, two parts of a contour come to each other
so close that several pixels between them are marked as collision points.
Therefore with the original PLS algorithm a change of topology appears
even though it is not required. (Downside row): With the new proposal
only changes of topology occur when real collisions appear.
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Therefore the PLS methodology with the new strategy to move the ac-
tive contours allow to evolve the contours along very narrow cavities as it is
illustrated in Fig. 19.

Fig. 19: (Upside row): In this example, two parts of a contour come to each other
so close that a change of topology provokes a bad operation. (Downside
row): With the new approach no changes of topology appear and the
contour can evolve along the cavity.

The new proposal outperforms the contour-based approach not only con-
cerning the efficiency but also in the simplicity of the implementation: Only
three isotropic 3x3 linear templates are required instead of the 18 directional
templates reported in [9]. Nevertheless this new approach presents an ex-
ception: those particular cases where one or several contours appear to be
completely surrounded by another active contour cannot be directly managed
with the proposed strategy because the cross along the region context would
eliminate the internal active contours. On the other hand this behavior can
also provide a more robust contour evolution by the absorbtion of artifacts

in outwards evolutions in some practical situations as it is illustrated in Fig.
20.

4 Implementation

A flow diagram containing all the operations of the new algorithm for PLS
proposed in this paper is showed in Fig. 21. For the CNN operations the
initial state and the external input are labelled with A and B respectively.
The result of those CNN operations where the A or B labels are missing
is independent of the initial state or the input. The only exception is the
Hole Filling operation where a +1 initial state should be imposed for all the
cells [12]. The collision point detection module (CPD) responsible to prevent
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Fig. 20: Contour evolution based on inflating potential and external potential
corrupted by noise (binary salt and pepper). (Upside row): Without
topologic transformation capabilities the contour is anchored in the cor-
rupted locations. (Downside row): The changes of topology based on the
new module permit to leap these locations when they are surrounded.

the collision between contours is no longer required to manage the topologic
transformations thus its implementation could be unnecessary. Nevertheless
it has been included into the general structure of the algorithm to attend
those possible applications where the contour topology should be preserved
[23, 7]. Note that the result of this operation could also be used to control the
operation of the module responsible for the topological transformations: only
changes of topology should be checked when collision points are predicted
with the CPD operation.

The dark gray items in Fig. 21 represent the external data provided by the
user. They include:

e Input images: The external potential image (gray-level image) and the
initial contour image (binary image).

o Weights: ke, Kine and kj, ; weigh the influence in the contour evolution
of the external potential, internal potential and inflating (deflating)
potential respectively.

e Switches: s;,,s selects between inflating (4+1) and deflating (-1) poten-
tial in the balloon potential estimation module (BPE). sqq activates
(-1) or inhibits (+1) the operation of the collision point detection.
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Fig. 21: Flow diagram of the new PLS algorithm containing all the implemented
CNN operations (ACE4K [10], ACE-BOX [1]). The active contour image
is externally provided for the first iteration.
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The external potential field must be defined to have the potential valleys
in the boundary of the objects of interest. This definition strongly depends on
each application, and usually generates several false positives (due to noise
or another non-interest objects) and false negatives (parts of the desired
object contour go unnoticed). Often, different image features are combined
depending on the application domain and the objects to be segmented [3, 24].
However, the best way of integrating different features remains an open prob-
lem and the priority (weight) of image features is still unclear. Another key
point is the definition of the initial contours. Since the contour evolution
is based on the flow through decreasing potential fields which are estimated
based on local rules, the efficiency of the algorithm decreases with the dis-
tance from the potential valleys. There is not a general rule to impose the
initial contours. It depends on the application and the previous knowledge of
the objects to be defined. The use of the balloon potentials can help to make
the operation less sensitive with the contour initialization. However, even so,
some previous knowledge about the objects to be delimited are required in
order to put the initial contour inside (when inflating potentials are used) or
outside (when deflating potential are used) the region of interest.

The configuration of the switches (s;,5 and s.,q) can be lead to very dif-
ferent behaviors for the same input images (external potential and initial
contour) which allows to approach more complex tasks based on multiple
PLS-operations by changing automatically the configuration of these param-
eters as it will be showed in the next section.

The templates for the DCE, DCT and CPD operations are derived rely-
ing on the local rules showed in Fig. 22. The directional gradient (D_Gr)
is performed by an approximation of the Sobel operator. The remainder
of the processing steps consists of simple binary logical operations and well-
known propagative (thresholding, one-step opening, edge detection) and non-
propagative (diffusion, hole filling) analogic CNN operations. In order to
make the paper self-contained the templates for all the operations in the al-
gorithm are included in Appendix I.
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DCE [> [ | Otherwise keep initial state
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Fig. 22: Patterns and local for the templates of the directional contour expan-
sion and thinning and for the collision point detection along the North
direction. For the processing along the other three cardinal directions
the resulting templates should be suitably rotated. Note that the initial
state always makes reference to the previous state of the central cell of
the corresponding pattern.
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All the steps of the proposed algorithm consist of simple local dynamic
convolution and morphological hit and miss operations together with simple
arithmetic and logical operations. Therefore the proposed algorithm meets
the requirements of the current CNNUM implementations. The algorithm
has been implemented and tested on the 64x64 CNNUM, ACE4K ([6, 10])
within the ACE-BOX computational environment [1]. In Table 1, the exe-
cution times for each module of the algorithm in Fig. 21 are gathered.

| |GFE |[DCE |DCT [TP |BPE |IPE |
| Time (us) [ 250 | 60 (160  [760  [750 |40 |

Tab. 1: Execution time of all major processing modules in the PLS algorithm
extracted from the implementation on the ACE4K (one iteration along a
cardinal direction).

Note that the estimation of the internal potential and the inflating/deflating
potential (IPE and BPE) are required only once per cycle (one cycle repre-
sents four iterations, one for each cardinal direction). Furthermore and as a
difference with the original PLS algorithm, the topologic transformations can
be checked once per cycle or even less since now the changes of topology are
correctly performed in any time after the collision between contours. There-
fore the new algorithm with all the functionalities requires less than 4ms to
complete one cycle running in the 64x64 CNNUM chip. We have observed
that in real time applications like video object segmentation and tracking less
than ten iterations per frame are usually needed. Therefore, even with the
full version of the algorithm the processing of 25 frame/s is feasible. Further-
more in the most of the practical cases not all the functionalities are needed
at the same time which can considerably reduce the computational effort.
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5 Applications

In order to illustrate the capabilities of the new algorithm in real appli-
cations we will show some examples including the processing of binary and
gray-scale inputs. First, we will show how the algorithm can be used to find
the shortest path in a binary labyrinth where the evolution along very nar-
row cavities based on inflating and deflating forces is required. Furthermore,
the capability to detect and prevent collisions between contours plays an
important role in this application. Following we will show examples of appli-
cations involving gray-level inputs in medical image processing, a framework
where the active contour techniques are most frequently applied [13]. To this
end different capabilities of the PLS-algorithm are exploited, including the
management of topologic transformations.

5.1 Binary input: shortest path problem

PLS can be applied to resolve the shortest path problem in wide binary
labyrinths. The strategy is based on the approach proposed in [16] and
later developed in [18] for narrow labyrinths composed by one pixel wide
four connected paths. There the labyrinth under study is explored by a
travelling wave initiated at the source point. Then, the wave-front evolving
on the shortest path will reach the target point without collision. Any waves
initiated at a junction located on the shortest path will reach the end of the
branch or collide with other wave(s). If the paths are cut at the collision
points then all closed loops will be destroyed. Finally, all the branches are
pruned in such a way that if there is a unique solution the result will be the
shortest path.

In the PLS framework, an active contour surrounding the source point is
guided by an inflating potential field through the labyrinth (s;,; = +1, Fig.
21). The CPD operation prevents the possible collisions when different parts
of the active contour meet each other (s.,q = —1). Finally, the contour is
anchored in the target and the guiding information is switched to a deflating
potential (s;,r = —1). Fig. 23 illustrates the commented strategy with two
examples.

Note that at least a three-pixel wide labyrinth is required for the propagation
of well-defined active contours. This strategy can guarantee a valid solution
if the width of the labyrinth is 4N-1 in all locations where N represents the
number of different solutions. Fig. 24 shows an example of a seven-pixels
wide labyrinth with two possible solutions. As it can been observed the width
of the paths guarantees that at least one (or even two) contours can evolve
along them.
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Fig. 23: Contour evolution through binary labyrinths. Initially, the contour evo-
lution is based on an inflating potential field. When the target is reached
the guiding information is switched to deflating potential to compress the
contour and finally define the shortest path.

Fig. 24: Contour evolution through a 7-pixels wide labyrinth. In this example
there are two different valid solutions. The algorithm guarantees to result
in at least one of the shortest paths.
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The PLS-based approach of the shortest path problem is particularly
advantageous in sparse labyrinths mainly present in applications like robot
path planning where different obstacles should be avoided to reach the target.
As a difference with the narrow-labyrinth techniques the PLS approach acts
directly on the real scenario to find the optimal path. The search can be
based on the following metrics:

e City-block distance: d((iﬂbyl), (x2,y2)) = |931 - 552| + |?J1 - y2|
e Maximum distance: d((z1,¥1), (T2,92)) = mam{|x1 — |, |y — y2|}

The City-block or Manhattan distance comes as result of estimating the
inflating potential (BPE module in Fig. 21) only once each cycle whereas
the Maximum distance is a consequence of the inflating potential estimation
in every iteration (i.e. along each cardinal direction, four times per cycle).
Fig. 25 shows both metrics implemented with the PLS.

Fig. 25: Several snapshots of a contour evolution based on inflating potential.
(Upside row): City-block distance resulting from one BPE per cycle
(iter=1, 15, 30, 45, 61). (Downside row): Maximum distance resulting
from one BPE per iteration (iter=1, 7, 15, 23, 31).

The choice of the type of distance to be implemented is critical. The
shortest path depends strongly on such selection as it is illustrated in Fig.
26.

Note that the shortest path is defined based on the orientation of the
obstacles when they are avoided along a trajectory. Therefore the one-pixel
wide path surrounded by the final contour does not necessary have a minimal
length. Nevertheless this can be approached by a third step of processing
where the CPD operation is inhibited (scpp = +1). As a consequence the
contour collides with itself giving place to an open contour anchored in both
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Fig. 26: Several snapshots of a contour evolution to define the shortest path from
the start point and the target (surrounded in white and black respectively
in the first picture of both sequences). (Upside row): Shortest path based
on the City-block distance. (Downside row): Shortest path based on the
Maximum distance.

the starting and target points. Now, the action of the internal potential will
tighten the contour going closer to the minimal length path. This operation
is illustrated in Fig. 27 where quasi-optimal routes are approached from the

results in Fig 26.

Fig. 27: Several snapshots of a contour evolution towards quasi-optimal paths
from the results in Fig 26. The collision of the contour produces an open
contour anchored in the ends (start and targetpoints). Therefore the
internal potential will smooth the contour constrained by the obstacles
into the scene.

In summary in sparse labyrinths a quasi-optimal route can be approached by
carrying out consecutively the following processing steps (Fig. 28):
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1. Contour evolution based on inflating potential (s;,; = +1). The colli-
sions should be avoided (scpp = +1).

2. Contour evolution based on deflating potential (s;,y = —1). The colli-
sions should be avoided (scpp = +1).

3. Contour evolution based on internal potential (k;,; > 0). The collisions
should be allowed (scpp = —1).

(a) Start/target  (b) Step 1 (c) Step 2 (d) Step 3

Fig. 28: Determination of a quasi-optimal route from a start point (surrounded
in white in the first picture) and a given target (surrounded in black in
the first picture) by three consecutive PLS-processing based on different
switch configuration. (a): Labyrinth with the start point and the target,
(b): Exploration step, (c): Route definition step, (d): Path optimization
step.

Therefore the complex task of determining a quasi-optimal path in sparse
labyrinths (robot path planning) can be approached by three consecutive
PLS-operations based on different configurations of the externally accessible
parameters. Finally in Fig. 29 quasi-optimal routes are determined from one
start point to four different targets. In this case the City-block distance for
the first step (exploration) was considered.

R Rt S
¥ Al

Fig. 29: Shortest paths from a start point (surrounded in white in the first pic-
ture) and different targets (surrounded in black in the first picture).
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5.2 Gray scale input: medical image processing

In order to illustrate the capabilities of the new algorithm in real applica-
tions where gray-level inputs are involved we will show some examples into
the framework of medical image processing. First, in Fig. 30 we show several
snapshots of the evolution of active contours along blood vessels from a reti-
nal angiography image. In this case the contour evolution is guided by the
combination of the intensity image and inflating potential. As it can be seen
the operation entails the evolution along narrow cavities and several changes
of topology. Note, that in this case the CPD operation should be inhibited.

Fig. 30: Example of segmentation of blood vessel in an angiogram of retina from
several initial contours. The sequence goes from left to right and top to
bottom.

Finally, we have carried out the processing of sequences of ultrasound
(US) echocardiography images. The aim of the operation is to define the
contour of the left ventricle from the frames as a previous step towards its
3D reconstruction. The contour evolution is guided by a combination of ex-
ternal potential from the US images together with internal potential to keep
smooth the contour shape. In order to implement the complete system in
the ACE4K, the external potential is derived from the current frame filtered
by a local constrained diffusion (see the corresponding template in appendix
I) combined with the result of a diffused edge detection onto this image (Fig.
31). The diffused edge detection encourages the contour evolution towards
edges and the inverted filtered image reinforces the evolution towards high
intensity locations.
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Fig. 31: External potential estimation for the contour location in US images of the
human left ventricle. The diffused edge detection generates a potential
field with the edges in the valleys (lower real intensity). The substraction
of the filtered image encourages the contour evolution to the real high
intensity boundaries. ky; and kg; ¢ are constants which weigh the filtered
image and the diffused edge detection.

Only in the processing of the first frame of each sequence an inflating
potential is also considered to put one initial seed situated into the left ven-
tricle close to the boundaries of interest. For the subsequent frames the
initial contour coincides with the result from the previously processed frame.
In Fig. 32, 33, 34, 35 and 36 several frames of five sequences of processed US
images following the commented strategy superimposed to the final contours
resulting from the on-chip experiments are showed.

6 Conclusions

Pixel-level snakes represent a cellular active contour technique which has
demonstrated a high performance in multiple active contour applications. In
this paper, the associated algorithm has been analyzed and some limitations
and exceptions have been discussed leading to new proposals to increase the
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Fig. 32: Contour tracking in ultrasound echocardiography. The sequence goes
from left to right and top to bottom.

Fig. 33: Contour tracking in ultrasound echocardiography. The sequence goes
from left to right and top to bottom.
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Fig. 34: Contour tracking in ultrasound echocardiography. The sequence goes
from left to right and top to bottom.

Fig. 35: Contour tracking in ultrasound echocardiography. The sequence goes
from left to right and top to bottom.
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Fig. 36: Contour tracking in ultrasound echocardiography. The sequence goes
from left to right and top to bottom.

performance of the PLS. The contributions include a new term to guide the
contour evolution as well as a new strategy to manage the topologic transfor-
mations. Furthermore, changes have been introduced into the contour evo-
lution module. Altogether these modifications lead to a higher performance
and an easier hardware implementation of the algorithm for pixel-level snakes
onto a CNN chip set architecture. The algorithm has been already tested on
the 64x64 CNNUM, ACE4K [6, 10] within the ACE-BOX computational en-
vironment [1]. All the examples used to illustrate the algorithm capabilities
represent experimental results from the chip implementation. Furthermore,
this implementation has been used to solve a complex task of practical in-
terest, the contour location of US images of the human left ventricle.
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Appendix |I. Template derivation

In this Appendix, the templates involved in the PLS algorithm are listed.
The templates are expressed in a vector format:

ng N1 N2
ng ng ny | = [no,n1,ne, N3, N, N5, Ne, N7, Ng) (1)
Neg N7 Ng

Directional templates for the processing along the North direction (for East,
West and South directions these templates should be suitability rotated):

D _Gr:

B=0.25*[1,2,1,0,0,0,-1,-2,-1];

DCE:

A=[0,0,0,0,1,0,0,0,0); B=[0,0,0,0,1,0,0,1,0]
DCT(1):

A=[0,0,0,0,1,0,0,0,0]: B=[0,-1,0,0,2,0,0,1,0]; I=1
DCT(2):

A=[0,0,0,0,1,0,0,0,0); B=[0,0,0,-1,1,0,1,0,0]; I=-2
DCT(3):

A=[0,0,0,0,1,0,0,0,0]: B=[0,0,0,0,1,-1,0,0,1]; I=1
CPD(1):

A=[0,0,0,0,1,0,0,0,0]; B=0.5*[1,1,1,-3,-3,-3,0,-3,0]; I=-5
CPD(2):

A=[0,0,0,0,1,0,0,0,0); B=[1,-1,0-1,-1,1,0,1,0]; I=-5
CPD(3):

A=[0,0,0,0,1,0,0,0,0]; B=[0,-1,1,1-1-1,0,1,0]); I=-5

Isotropic templates:

THRES:

A=[0,0,0,0,2,0,0,0,0]

H_F:

A=|0,1,0,1,3,1,0,1,0]; B=[0,0,0,0,4,0,0,0,0]; I=-1
OPEN:

B=[0,1,0,1,1,1,0,1,0]; I={-4,+4}

EDGE:

A=(0,0,0,0,2,0,0,0,0]; B=0.25*[-1,-1,-1,-1,8,-1,-1,-1,-1];
I=1.5

DIFFUS:

A=0.05*]2,3,2,3,0,3,2,3,2];

LC_DIFFUS:

A=0.05%[2,3,2,3,0,3,2,3,2]; B=0.05%[2,3,2,3,0,3,2,3,2];
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