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We consider a discrete-time financial market model with finite time
horizon and give conditions which guarantee the existence of an optimal
strategy for the problem of maximizing expected terminal utility. Equivalent
martingale measures are constructed using optimal strategies.

1. Introduction. In this paper we study the existence of optimal portfolios
for maximizing expected utility at the end of a trading period in a financial market.
Preferences of the agent in consideration are described by a nondecreasing concave
function U : R → R, trading dates occur at discrete time instants.

The same problem has been treated in [27] for a general, continuous-time
semimartingale model. The article (similarly to its predecessor [20]) formulated
a so-called “reasonable asymptotic elasticity” condition on U which is sufficient
for the existence of an optimal stratregy (provided that the asset price process
admits an equivalent local martingale measure and is locally bounded). This
condition appears to be necessary in the general context, as highlighted by the
counterexamples given there. The paper made extensive use of functional analysis
and followed an approach via the dual problem. We wondered how this could be
avoided, at least in a discrete-time setting.

As it will become clear in the arguments below, in discrete-time market models
a direct probabilistic approach is possible, based on a simple idea going back to,
for example, [25]. Under weaker “asymptotic elasticity” conditions, we manage
to establish the existence of optimal strategies for nonsmooth utility functions
and for possibly unbounded price processes, hence, we cover (though only in
discrete-time) several cases where previous results do not apply, see Remark 2.6
of [29], as well as Remark 2.9 below. Although our arguments appear to be fairly
straightforward, they are not quite evident due to a number of hidden pitfalls
related to some delicate measure theoretic issues.
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It seems that, despite its practical importance, discrete-time utility maximization
has been somewhat neglected lately. Schäl [31] considers utilities defined on the
whole real line in a finite probability space setting; Schäl [29, 30] studies the case
of utilities U : R+ → R; Kramkov and Schachermayer [20, 21] give exhaustive
treatments of the case U : R+ → R in a general semimartingale model. It is
possible to apply our techniques to this kind of utility function, too; related results
will be presented elsewhere.

On the history of the problem, consult the papers cited above with the references
therein. In Section 2 below we present our main results. Section 3 deals with
consequences of the absence of arbitrage property. Section 4 considers a one-step
model which is then carried over to several time steps in Section 5. In Section 6
equivalent martingale measures are constructed using optimal strategies, Section 7
presents examples and corollaries of the main results. Finally, the Appendix
contains auxiliary material.

2. Problem formulation. A usual setting for discrete-time market models
is considered: a probability space (�,F ,P ); a filtration (Ft )0≤t≤T and a
d-dimensional adapted process (St )0≤t≤T describing the (discounted) price of d

assets which are present in a given economy. We suppose that F0 contains
all P -zero sets. The symbol 〈·, ·〉 denotes the usual scalar product in Rd ,
|x| := √〈x, x〉.

In what follows, �t will denote the set of Ft -measurable d-dimensional
random variables. Trading strategies are represented by arbitrary d-dimensional
predictable processes (φt )1≤t≤T , where φi

t denotes the investor’s holdings in
asset i at time t ; predictability means that φt ∈ �t−1. The family of all predictable
trading strategies is denoted by �. In continuous-time models “admissibility”
requirements are usually imposed on portfolios (e.g., the value process is bounded
from below). An important feature of the present approach is that we go beyond
the class of (locally) bounded price processes. When dealing with unbounded S,
it is crucial to allow portfolios which are not necessarily bounded from below.

The value at time t of a portfolio φ starting from initial capital c is given by

V
c,φ
t = c +

t∑
i=1

〈φi,�Si〉,

where �Si := Si − Si−1 and c ∈ R.
Fix a concave nondecreasing function U : R → R. The positive (resp. negative)

part of a real-valued function V is denoted by V + (resp. V −). Regular conditional
distributions and generalized conditional expectations are used throughout the
paper. Dependence of various functions on ω ∈ � will often be dropped in the
notation. By convention, U ′(x) denotes the left-hand derivative of U at x.

We are dealing with maximizing the expected terminal utility EU(V
c,φ
T ) from

initial endowment c. In order to have a well-posed problem, it should be stipulated
that the optimal value is finite.
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ASSUMPTION 2.1. Suppose that the following random functions are well
defined:

UT (x) := U(x), x ∈ R;
for 0 ≤ t < T and for all x ∈ R,

Ut(x) := ess sup
ξ∈�t

E
(
Ut+1(x + 〈ξ,�St+1〉)|Ft

)
< ∞ a.s.,

and for all x ∈ R,

EU0(x) < ∞.(1)

REMARK 2.2. We remark that regular versions of Ut exist by Proposition 4.4
below. The quantity Ut(x) is the highest future expected conditional utility with
respect to Ft for an agent who starts trading at time t with initial endowment x.
So Assumption 2.1 roughly says that the supremum of future expected utility
at time 0 should not attain ∞. This is a natural requirement in the context of
utility maximization. If U is bounded from above [e.g., the often encountered
exponential utility U(x) = 1 − e−x or the shortfall function U(x) = max{x,0}],
then Assumption 2.1 trivially holds. For unbounded U , Assumption 2.1 seems to
be more difficult to verify, we shall check its validity in a fairly broad model class
in Proposition 7.1.

We will impose the following absence of arbitrage (NA) property (see Section 3
for a discussion):

(NA) :∀φ(V
0,φ
T ≥ 0 a.s. ⇒ V

0,φ
T = 0 a.s.).(2)

One can assert the existence of an optimal strategy under certain conditions
on U .

ASSUMPTION 2.3. The utility function U : R → R is concave, nondecreasing;
U(0) = 0, and there exists x̃ > 0 and 0 < γ < 1 such that for x ≥ x̃ and for any
λ ≥ 1,

U(λx) ≤ λγ U(x).(3)

REMARK 2.4. Condition (2.3) appears as a hypothesis in [20] and [27]; it is
equivalent to a certain asymptotic elasticity property of U :

lim sup
x→∞

U ′(x)x

U(x)
< 1;

see Section 6 of [20] for details. This concept encompasses the most frequently en-
countered behaviors of utility functions at ∞ (bounded, logarithmic, power < 1).
The condition U(0) = 0 can evidently be dropped, we stipulate it only for the sake
of a simpler presentation.
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It is possible to replace (2.3) by a hypothesis on the behavior of U at −∞.

ASSUMPTION 2.5. The function U is concave, nondecreasing; U(0) = 0 and
there exist α > 0, x̃ ≤ 0 such that

U(λx) ≤ λ1+αU(x),(4)

for all x ≤ x̃.

REMARK 2.6. Again, this is equivalent to another property of a “asymptotic
elasticity,” which appears in [27]:

lim inf
x→−∞

U ′(x)x

U(x)
> 1,

see also [10] and [11].

THEOREM 2.7. Let U satisfy either Assumption 2.3 or Assumption 2.5 and
S satisfy (2). Let us suppose that Assumption 2.1 holds true. Then there exists a
strategy φ∗ = φ∗(c) satisfying

u(c) = EU
(
V

c,φ∗
T

)
< ∞,

where

u(c) := sup
φ∈�(U,c)

EU(V
c,φ
T ),

and �(U, c) is the set of strategies φ ∈ � for which the expectation EU(V
c,φ
T ) is

well defined.

Introduce the random subset Dt(ω) of Rd : the smallest affine hyperplane
containing the support of the (regular) conditional distribution of �St with
respect to Ft−1; this is an Ft−1-measurable random set, see the Appendix and
Proposition A.1 in particular. We now present a uniqueness result.

THEOREM 2.8. If the assumptions of the previous theorem are met and U is
strictly concave, then there is a unique optimal strategy φ∗ satisfying

φ∗
t ∈ Dt a.s.

We present the proofs of Theorems 2.7 and 2.8 in Sections 4 and 5, under
Assumption 2.3. At the end of Section 5 we indicate the necessary modifications
under Assumption 2.5.
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REMARK 2.9. In [27] the existence of an optimal strategy is proved for locally
bounded S (which is a local martingale under some equivalent measure) and under
certain conditions on U [differentiability, Inada conditions, (2.3) and (2.5)].

In the present discrete-time setting one may assert the existence of an optimal
strategy for a larger class of utility functions. Examples 7.4 and 7.5 show that there
are applications of our main result for which this extension is crucial.

We also allow S to be possibly unbounded. In this case, the usual duality
approach (see, e.g. [17, 27] or [9]) does not work: according to Counterexample 2.1
on page 46 of [9], the dual problem may fail to admit an optimal solution.

One may even consider even random utility functions U(x,ω); see [19] and [1].
This comes in handy, for example, when we have a fixed random variable B(ω)

(contingent claim) and try to maximize

EU(V
c,φ
T − B),

for some (deterministic) U . Our arguments are applicable in this case, too:

THEOREM 2.10. Set UT (ω) = U(x −B(ω)). Suppose that (NA) and Assump-
tion 2.1, as well as either Assumption 2.3 or Assumption 2.5, hold. If B is bounded,
then there exists φ∗ = φ∗(c) such that

u(B, c) = EU
(
V

c,φ∗
T − B

)
< ∞,

where

u(B, c) := sup
φ∈�(U,c,B)

EU(V
c,φ
T − B),(5)

and �(U, c,B) is the set of strategies φ ∈ � such that the expectation
EU(V

c,φ
T − B) is well defined.

See the end of Section 5 for a proof.

3. Absence of arbitrage. Proposition 3.1 suggests that (NA) cannot be
dropped in Theorem 2.7 above.

PROPOSITION 3.1. If U is strictly increasing and (NA) fails, there is no
maximizer φ∗ = φ∗(c) such that u(c) = EU(V

c,φ∗
T ) < +∞.

PROOF. Take a strategy φ̂ violating (2). Then

EU
(
V

c,φ∗+φ̂
T

) = EU
(
V

c,φ∗
T + V

0,φ̂
T

)
> EU

(
V

c,φ∗
T

)
,

contradicting the optimality of φ∗. �
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PROPOSITION 3.2. Under (NA), the set Dt(ω) is actually a vector subspace
of Rd almost surely.

PROOF. This follows from Theorem 3 of [15]. It is also easy to give a direct
argument. �

We will need a “quantitative” characterization of (NA), see Proposition 3.3
below. This statement is implicit in [15], but it does not follow from the arguments
there. Compare also to Lemma 2.6 of [26]. Define

�̃t := {
ξ ∈ �t : |ξ(ω)| = 1 on {Dt+1 = {0}}, ξ(ω) ∈ Dt+1(ω) a.s.

}
.

PROPOSITION 3.3. (NA) implies the existence of Ft -measurable random
variables βt , κt > 0 satisfying

∀p ∈ �̃t P (〈p,�St+1〉 < −βt |Ft ) ≥ κt on {Dt+1 = {0}}(6)

almost surely, for all 0 ≤ t ≤ T − 1.

PROOF. We may and will suppose Dt+1 = {0} a.s. Fix t and a sequence
δn ↘ 0. Define

An :=
{
ω : ess inf

p∈�̃t

P (〈p,�St+1〉 < −δn|Ft ) = 0
}
.

The essential infimum is actually attained by some p∗
n ∈ �̃t . Indeed, take pk

n ∈ �̃t

such that

lim
k

↓ P(〈pk
n,�St+1〉 < −δn|Ft ) = ess inf

p∈�̃t

P (〈p,�St+1〉 < −δn|Ft ),

apply Lemma A.2 to obtain a random subsequence p̃k
n converging to some p∗

n.
Define

Bk := {〈p̃k
n,�St+1〉 < −δn}, B := {〈p∗

n,�St+1〉 < −δn},
and check that B ⊂ lim infk Bk , so lim infk IBk

(ω) = Ilim infk Bk
(ω), and the Fatou

lemma guarantees that

P(〈p∗
n,�St+1〉 < −δn|Ft ) ≤ lim

k
P (〈p̃k

n,�St+1〉 < −δn|Ft ),

so p∗
n attains the essential infimum.

Clearly, An+1 ⊂ An, set

A :=
∞⋂

n=1

An.



DISCRETE-TIME UTILITY MAXIMIZATION 1373

We shall show P(A) = 0. If this were not the case, one would have a random
subsequence p̃∗

n of p∗
n converging to some p̃. A Fatou lemma argument as above

shows

P(〈p̃,�St+1〉 < 0|Ft ) ≤ lim inf
n→∞ P(〈p̃∗

n,�St+1〉 < −δn|Ft ) = 0

on A, so, necessarily,

P(〈p̃IA,�St+1〉 ≥ 0|Ft ) = 1,

hence, (NA) implies that

P(〈p̃IA,�St+1〉 = 0|Ft ) = 1,

which contradicts p̃ ∈ Dt+1, thus, indeed, P(A) = 0 must hold.
Define

βt :=
∞∑

n=1

δnIAC
n \AC

n−1
with AC

0 := ∅.

This is an almost everywhere positive function by P(A) = 0 and it is easy to see
that

∀p ∈ �̃t P (〈p,�St+1〉 < −βt |Ft ) > 0 a.s. �

The condition in Proposition 3.3 is actually equivalent to (NA).

4. Optimal strategy for the one-step case. Let V (x,ω) be a function from
R × � to R such that for almost all ω, V (·,ω) is a nondecreasing (finite-valued)
concave function and V (x, ·) is F -measurable for any fixed x. Let H ⊂ F be
a σ -algebra containing P -zero sets. Let Y be a d-dimensional random variable.
Denote by � the family of H -measurable d-dimensional random variables.
Introduce

�̃ := {
ξ ∈ � : |ξ(ω)| = 1, on {D = {0}}, ξ(ω) ∈ D(ω) a.s.

}
,

here D denotes the smallest affine subspace containing the support of the
conditional distribution of Y with respect to H (see the Appendix). We suppose
that D is actually a vector subspace a.s. and that

∀p ∈ �̃ P (〈p,Y 〉 < −δ|H) ≥ κ on
{
D = {0}},(7)

with some H -measurable random variables κ, δ > 0.
This setting will be applied in Section 5 with the choice H = Ft−1,

D = Dt,Y = �St ; V (x) will be the maximal conditional expected utility from
capital x if trading begins at time t .

Assume that, for all x ∈ R,

EV (x) > −∞,(8)
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and that

ess sup
ξ∈�

E
(
V (x + 〈ξ, Y 〉)|H)

< ∞ a.s.(9)

Finally, suppose that almost surely, for all x ∈ R and λ ≥ 1 both,

V (λx) ≤ λV (x) + Cλγ , V (λx) ≤ λγ V (x) + Cλγ(10)

hold for some constants C > 0 and 0 < γ < 1. The first inequality will be used for
negative, the second for positive values of V (x).

REMARK 4.1. We may interpret V as a random element taking values in
a Lusin space (see III. 16 of [6]): one can identify the set V of nondecreasing
concave functions R → R with a Borel-subset of RN; if U is a nondecreasing
concave function, then let the corresponding element of RN be(

U(q1),U(q2), . . .
)
,

where (qn)n∈N is a fixed enumeration of Q. We leave the details to the reader, as
we need this fact only once, in the proof of Proposition 4.6.

Now we briefly sketch the strategy for proving the existence of an optimal
portfolio in the one-step case. After constructing regular versions of certain
functions (Propositions 4.2 and 4.4), a sequence ξn(x,ω) is chosen along which
the optimal expected utility of (9) is attained. We project strategies on D

(Proposition 4.6) and show [using (7) and (10)] that we may suppose |ξn| ≤ K

for some H -measurable K (Lemma 4.8). Then a compactness argument provides
the limit ξ̃ (Lemma 4.9), which turns out to be an optimal strategy.

PROPOSITION 4.2. Let ξ ∈ � be fixed. There exists a version of

x → E
(
V (x + 〈ξ, Y 〉)|H)

,

such that it is a nondecreasing upper semicontinuous concave function ( perhaps
taking the value −∞), for almost all ω.

PROOF. We fix a version of F(q,ω) := E(V (q + 〈ξ, Y 〉)|H) for q ∈ Q. The
following inequalities hold almost surely for any pairs q1 ≤ q2 of rational numbers:

F(q1) ≤ F(q2), F

(
q1 + q2

2

)
≥ F(q1) + F(q2)

2
.

Let us fix a P -zero set N such that outside this set, the above inequalities hold.
Extend F(·,ω) on the real line for each ω ∈ � \ N as an upper semicontinuous
concave function (taking possibly the value −∞). Fix x ∈ R and rationals qn ↘ x.
The monotone convergence theorem yields

F(x) = lim
n

F (qn) = lim
n

E
(
V (qn + 〈ξ, Y 〉)|H) = E

(
V (x + 〈ξ, Y 〉)|H)

,

showing that F is, indeed, as required. �
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REMARK 4.3. It is actually possible to prove the existence of a continuous
version (taking possibly the value −∞). It is also clear that the version constructed
above is almost surely continuous for all x ≥ y if y is such that

E
(
V (y + 〈ξ, Y 〉)|H)

> −∞ a.s.

PROPOSITION 4.4. There is a function G :� × R → R which is a version of

ess sup
ξ∈�

E
(
V (x + 〈ξ, Y 〉)|H)

for each fixed x ∈ R and which is a nondecreasing finite-valued concave (a fortiori
continuous) function for almost all ω.

PROOF. As in the previous proof, we construct a version G(q,ω) of the
ess sup for q ∈ Q and extend it on R as a function which is increasing, concave
and finite-valued [by (8) and (9)], hence, continuous. Fix x ∈ R and a sequence of
rationals qn ↗ x. Monotone convergence shows that

G(x) = lim
n

↑ G(qn) = lim
n

ess sup
ξ∈�

E
(
V (qn + 〈ξ, Y 〉)|H)

= ess sup
ξ∈�

E
(
V (x + 〈ξ, Y 〉)|H)

,

the proposition is proved. �

We construct a sequence of strategies converging to the optimal value for all
x ∈ R.

LEMMA 4.5. There exist B(R) ⊗ H -measurable functions ξn(x,ω) and
suitable versions Gn(x) of

E
(
V

(
x + 〈ξn(x), Y 〉)|H)

,

such that outside a fixed P -zero set, we have, for all x ∈ R,

lim
n→∞E

(
V

(
x + 〈ξn(x), Y 〉)|H) = G(x),(11)

where G(x) is the regular version of ess supξ∈� E(V (x + 〈ξ, Y 〉)|H) figuring in
Proposition 4.4. The limit is attained in a nondecreasing way.

PROOF. It suffices to prove this for x ∈ [0,1); in an analogous way, we get
sequences ξn for all the intervals [n,n + 1), n ∈ Z and then by “pasting together,”
we finally get an approximation all along the real line.

Fix a version G(·,ω) of the essential supremum given by Proposition 4.4. First
let us notice that, for fixed x ∈ R, the family of functions

E
(
V (x + 〈ξ, Y 〉)|H)

, ξ ∈ �(12)
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is directed upwards, so there is a sequence ηn(x) ∈ � such that

lim
n→∞ ↑ E

(
V

(
x + 〈ηn(x), Y 〉)|H) = ess sup

ξ∈�

E
(
V (x + 〈ξ, Y 〉)|H)

,

almost surely. Let us fix such a sequence for each dyadic rational q ∈ [0,1). Now
set

ξ0(x,ω) := 0.

Suppose that ξ0, . . . , ξn−1 have been defined, as well as ξn(x,ω) for 0 ≤ x < k/2n

for some 0 ≤ k ≤ 2n − 1. For k = 0, we set ξn(x,ω) := κ0
n, x ∈ [0,1/2n), where

κ0
n is chosen such that

E
(
V (〈κ0

n, Y 〉)|H) ≥ E
(
V

(〈ξn−1(0), Y 〉)|H) ∨ E
(
V

(〈ηn(0), Y 〉)|H)
.

For k ≥ 1, we set

ξn(x,ω) := κk
n(ω), x ∈

[
k

2n
,
k + 1

2n

)
,

where κk
n ∈ � is chosen in such a way that

E
(
V (k/2n + 〈κk

n, Y 〉)|H)
≥ E

(
V

(
k

2n
+

〈
ξn

(
k − 1

2n

)
, Y

〉)∣∣∣H)

(13) ∨ E

(
V

(
k

2n
+

〈
ηn

(
k

2n

)
, Y

〉)∣∣∣H)

∨ E

(
V

(
k

2n
+

〈
ξn−1

(
k

2n

)
, Y

〉)∣∣∣H)
,

almost everywhere. This is possible, as the family (12) is directed upwards.
Using Proposition 4.2 and Remark 4.3, take versions of the conditional

expectations

Gn(x,ω) := E
(
V

(
x + 〈ξn(x), Y 〉)|H)

(ω),

which are nondecreasing, concave and finite-valued on intervals of the form
[k/2n, (k + 1)/2n),0 ≤ k ≤ 2n − 1. Proposition 4.4 and (13) show that there
is a P -null set N such that, outside this set, G(·) is continuous, the functions
Gn(x) are nondecreasing in x and continuous on subintervals of the form [k/2n,

(k + 1)/2n),0 ≤ k ≤ 2n − 1, for n ∈ N. By the definitions of ηn(x) and ξn(x), we
see immediately that (outside another P -zero set N ′), for all dyadic rationals q ,

G(q) = lim
n→∞ ↑ E

(
V

(
q + 〈ξn(q), Y 〉)|H) = lim

n→∞ ↑ Gn(q).

Consequently, outside N ∪ N ′, the sequence Gn(x,ω) is nondecreasing in n, for
all x ∈ [0,1). For any x ∈ R and dyadic rationals q1 < x < q2,

Gn(q1) ≤ Gn(x) ≤ Gn(q2)



DISCRETE-TIME UTILITY MAXIMIZATION 1377

outside N , so, necessarily,

G(q1) ≤ lim inf
n

Gn(x) ≤ lim sup
n

Gn(x) ≤ G(q2),

outside N ∪N ′. The function G being continuous at x, we get convergence at each
point x ∈ [0,1). �

PROPOSITION 4.6. Let ξ ∈ �. Then ξ̂ ∈ �, where ξ̂ (ω) is defined as the
orthogonal projection of ξ(ω) on the subspace D(ω), for all ω. Furthermore,

E
(
V (x + 〈ξ̂ , Y 〉)|H) = E

(
V (x + 〈ξ, Y 〉)|H)

holds almost everywhere for each x.

PROOF. It is a standard exercise with the measurable selection theorem
(III. 44 of [6]) to show that there exist Rd -valued random variables σi(ω),
1 ≤ i ≤ d , which almost surely span D(ω). Define the random set

{(ω, x) :x ∈ D(ω), 〈ξ(ω) − x,σi(ω)〉 = 0,1 ≤ i ≤ d}.
Almost surely it consists of one point, ξ̂ (ω), hence, it is the graph of a function
which is measurable, again by III. 44 of [6].

We consider the random element (V ,Y ) ∈ V ×Rd (see Remark 4.1) and denote
its regular conditional probability with respect to H by R(dv, dy,ω) (see page 36
of [12] for an existence proof ). Let its y-marginal be denoted by X(dy,ω).
We fix any ω ∈ � such that R(·, ·,ω),X(·,ω) are measures. By the measure
decomposition theorem of Dellacherie and Meyer ([6], III. 70–73), we have that

R(dv, dy,ω) = Q(dv, y,ω)X(dy,ω),

for a suitable stochastic kernel Q. We have

E
(
V (x + 〈ξ̂ , Y 〉)|H) =

∫
Rd

∫
V

v(x + 〈ξ̂ , y〉)Q(dv, y,ω)X(dy,ω)

and

E
(
V (x + 〈ξ, Y 〉)|H) =

∫
Rd

∫
V

v(x + 〈ξ, y〉)Q(dv, y,ω)X(dy,ω).

The integrands differ only on the set B × V , where B := {y : 〈y, ξ〉 = 〈y, ξ̂〉}. By
the definition of D, X(B,ω) = 0, hence, the two integrals above are equal, which
is just the statement of the proposition. �

LEMMA 4.7.

lim inf
N→∞ ess inf

p∈�̃

P
(
V (−N) < −1, 〈p,Y 〉 < −δ|H)

≥ ess inf
p∈�̃

P (〈p,Y 〉 < −δ|H).
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PROOF. Clearly, V (−N) → −∞ almost surely as N → ∞. The essential
infima are attained by some p(N): this can be shown just like in Proposition 3.3.
So it suffices to prove

lim inf
N→∞ P

(
V (−N) < −1, 〈p(N),Y 〉 < −δ|H) ≥ ess inf

p∈�̃

P (〈p,Y 〉 < −δ|H),

which follows again by taking a convergent random subsequence and the Fatou
lemma. �

LEMMA 4.8. Let us fix x0, x1 ∈ R, x0 < x1. There exists an H -measurable
random variable K = K(x0, x1) > 0 such that, for any ξ ∈ � satisfying ξ ∈ D and
|ξ | ≥ K a.s., we have almost surely

∀x0 ≤ x ≤ x1 E
(
V (x + 〈ξ, Y 〉) − V (x)|H) ≤ 0.

PROOF. Take ξ ∈ �, |ξ | ≥ 1 and fix a version of

E
(
V (x + 〈ξ, Y 〉)|H)

,

as given by Proposition 4.2. By (10), we have the following estimation for any
x0 ≤ x ≤ x1:

V (x + 〈ξ, Y 〉) = V +
(
x +

〈
ξ

|ξ | , Y
〉
|ξ |

)
− V −

(
x +

〈
ξ

|ξ | , Y
〉
|ξ |

)

≤ |ξ |γ V +
(

x1

|ξ | +
〈

ξ

|ξ | , Y
〉)

+ 2C|ξ |γ − |ξ |(1+γ )/2V −
(

x1

|ξ |(1+γ )/2 +
〈

ξ

|ξ | , Y
〉
|ξ |(1−γ )/2

)
.

Now observe that Lemma 4.7 and (7) entail that there is an H -measurable random
variable N0 > 0 such that

ess inf
p∈�̃

P
(
V (−N0) < −1, 〈p,Y 〉 < −δ|H)

(ω) ≥ κ/2.(14)

Then

−E

(
V −

(
x1

|ξ |(1+γ )/2 +
〈

ξ

|ξ | , Y
〉
|ξ |(1−γ )/2

)∣∣∣H)
≤ −E(IB |H),

where

B :=
{〈

ξ

|ξ | , Y
〉
< −δ,V (−N0) < −1,

x1

|ξ |(1+γ )/2 − |ξ |(1−γ )/2δ < −N0

}
.

Putting together our estimations so far,

E
(
V (x + 〈ξ, Y 〉)|H) ≤ |ξ |γ E

(
V +

(
x1 +

〈
ξ

|ξ | , Y
〉)∣∣∣H)

(15)

+ 2C|ξ |γ − |ξ |(1+γ )/2κ/2,(16)
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as soon as
x1

|ξ |(1+γ )/2 − |ξ |(1−γ )/2δ < −N0.(17)

Let K0(ω) > 0 be an H -measurable random variable such that (17) is true for
|ξ | ≥ K0. We shall show in a minute that the first term on the right-hand side
of (15) is smaller than L|ξ |γ for some H -measurable L(ω) > 0, so this right-hand
side is smaller than E(V (x0)|H), provided that |ξ | ≥ K1, for some H -measurable
K1(ω) > 0. Finally, we may conclude that if K := K0 ∨K1 ∨1, then the statement
of Lemma 4.8 holds.

It remains to estimate the first term of the right-hand side of (15). Introduce the
following vectors for i ∈ W := {−1,+1}d :

θ
j
i := i(j), j = 1, . . . , d.

It is easy to see that

V +(x1 + 〈p,Y 〉) ≤ max
i∈W

V +(x1 + 〈θi, Y 〉),

for any p ∈ Rd, |p| ≤ 1. Hence, the term in consideration is smaller than

|ξ |γ ∑
i∈W

E
(
V +(x1 + 〈θi, Y 〉)|H) =: |ξ |γ L(ω),(18)

and L is finite by (9). �

LEMMA 4.9. There exists a B(R) ⊗ H -measurable function ξ̃ (x,ω) such
that, for all x ∈ R,

E
(
V

(
x + 〈ξ̃ (x), Y 〉)|H) = ess sup

ξ∈�

E
(
V (x + 〈ξ, Y 〉)|H)

.

PROOF. It suffices to prove this, for example, x ∈ [0,1), then one can
“paste together” the optimal strategy for x ∈ R. We take an approximating
sequence ξn as provided by Lemma 4.5, then change to the projections ξ̂n figuring
in Proposition 4.6. Using Proposition 4.2 and the structure, of the approximating
sequence, one can see that there are suitable versions of

E
(
V

(
x + 〈ξ̂n(x), Y 〉)|H)

,

such that almost surely,

∀x ∈ [0,1) E
(
V

(
x + 〈ξ̂n(x), Y 〉)|H) → G(x), n → ∞.

Then take x0 := 0, x1 := 1 and truncate ξ̂n: the strategies

ηn := ξ̂nI{|ξ̂n|≤K(x0,x1)}
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do at least as well as the original sequence since by Lemma 4.8 (and using suitable
versions of the conditional expectations) almost surely,

∀x ∈ [0,1) E
(
V

(
x + 〈ξ̂n(x), Y 〉)|H) ≤ E

(
V

(
x + 〈ηn(x), Y 〉)|H)

.

Again, for suitable versions of the conditional expectations, we almost surely have

∀x ∈ [0,1) E
(
V

(
x + 〈ηn(x), Y 〉)|H) → G(x), n → ∞.

Now use Lemma A.2 to find a random subsequence η̃k = ηnk
of ηn converging

to some ξ̃ . Apply the Fatou lemma (we shall justify its use in a while):

E
(
V

(
x + 〈ξ̃ (x), Y 〉)|H) ≥ lim sup

k

E
(
V

(
x + 〈η̃k(x), Y 〉)|H)

a.s.,

for each fixed x. By construction, almost surely

∀x E
(
V

(
x + 〈η̃k(x), Y 〉)|H) ≥ E

(
V

(
x + 〈

ξnk
(x), Y

〉)|H)
,

so the definition of essential supremum and the construction imply that, for each
fixed x ∈ R,

E
(
V

(
x + 〈ξ̃ (x), Y 〉)|H) = G(x),

that is, G(x) is a version of the conditional expectation.
It remains to check that one is allowed to use the Fatou lemma. This can be

shown as in Lemma 4.8: take the θi, i ∈ W defined there and estimate as follows:

V +(x + 〈η̃n, Y 〉) ≤ max
i∈W

V +(x + K〈θi, Y 〉) ≤ ∑
i∈W

V +(x + K〈θi, Y 〉),

for each n, hence,

E

(
max

n
V +(x + 〈η̃n, Y 〉)|H

)
≤ ∑

i∈W

E
(
V +(x + K〈θi, Y 〉)|H)

< ∞,

due to (9). �

PROPOSITION 4.10. The ξ̃ constructed in the proof of Lemma 4.9 satisfies

G(H) = E
(
V

(
H + 〈ξ̃ (H),Y 〉)|H) = ess sup

ξ∈�

E
(
V (H + 〈ξ, Y 〉)|H)

a.s.,

for any H -measurable R-valued random variable H ; here G is the function
constructed in Proposition 4.4.

PROOF. One may suppose, for example, H ∈ [0,1). Fix n ∈ N. Clearly,

Gn(H) = E
(
V

(
H + 〈ξn(H),Y 〉)|H)

a.s.,(19)

for step functions H , see the proof of Lemma 4.5. For general H , take step
function approximations Hl ↘ H , l → ∞ such that Hl ∈ [k/2n, (k + 1)/2n) on
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the set {ω :H(ω) ∈ [k/2n, (k + 1)/2n)}, for all 0 ≤ k ≤ 2n − 1. The strategies ξn

are piecewise constant, Gn(Hl) → Gn(H), l → ∞ by piecewise continuity, so
monotone convergence implies (19) for general H . Now the proof of Lemma 4.9
shows

Gnk
(H) ≤ E

(
V

(
H + 〈

ηnk
(H),Y

〉)|H)
almost surely, for each k ∈ N. Letting k → ∞, we get, by Lemma 4.5,

G(H) ≤ E
(
V

(
H + 〈ξ̃ (H),Y 〉)|H)

a.s.

The left-hand side of the second equality in the statement of Proposition 4.10 is
clearly not greater than the right-hand side, so we only need to show that for fixed
ξ ∈ �,

G(H,ω) ≥ E
(
V (H + 〈ξ, Y 〉)|H)

a.s.(20)

For step functions H , (20) is clearly true. Taking step functions Hn ↘ H , the
left-hand side converges by path regularity of G, the right-hand side by monotone
convergence. �

5. Dynamic programming. First we need an easy fact about U .

PROPOSITION 5.1. Let U satisfy Assumption 2.3. Then there is a constant
C > 0 such that U satisfies for all x and all λ ≥ 1 both of the following
inequalities:

U(λx) ≤ λU(x) + Cλγ ,(21)

U(λx) ≤ λγ U(x) + Cλγ .(22)

PROOF. Obviously (21) holds true for x ≥ x̃, since λ ≥ λγ and 0 < γ < 1. As
U is nondecreasing, (2.3) implies that

U(λx) ≤ U(λx̃) ≤ λγ U(x̃),(23)

for 0 ≤ x ≤ x̃, so we may set C := U(x̃). For x < 0, we have the following
estimation by concavity:

U(λx) ≤ U(x) + U ′(x)(λ − 1)x ≤ U(x) + (λ − 1)
(
U(x) − U(0)

) = λU(x).

Now (22) is clear for x > 0 by Assumption 2.3 and (23). Finally, (22) for x < 0
follows from (21), since in this case U(x) ≤ 0 and λγ ≤ λ. �

We would like to perform a dynamic programming argument in a non-
Markovian context just like Evstigneev [7]; establishing that some crucial
properties of U are preserved by Ut . In particular, the “asymptotic elasticity”
conditions (21) and (22). In continuous-time models such preservation properties
are studied in Lemma 3.12 of [20] and in section “Dynamic version of the utility
maximisation problem” of [27].
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PROPOSITION 5.2. The functions Ut,0 ≤ t ≤ T have versions, which are
almost surely nondecreasing, concave, and satisfy (21) and (22), as well as

EUt(x) > −∞, x ∈ R,0 ≤ t ≤ T ,(24)

Ut(x) < ∞, x ∈ R,0 ≤ t ≤ T .(25)

There exist B(R) ⊗ Ft -measurable functions ξ̃t+1,1 ≤ i ≤ T such that

∀x ∈ R Ut(x,ω) = E
(
Ut+1

(
x + 〈ξ̃t+1(x),�St+1〉)|Ft

)
.(26)

PROOF. Going backwards from T to 0, apply Lemma 4.9 with the choice
V := Ut,H = Ft−1,D := Dt,Y := �St . We need to verify the conditions of
Section 4: D is a random subspace by Propositions 3.2 and A.1; (7) follows
from (6); (8) and (9) will come from (24) and (25); (10) is a consequence of (21)
and (22); (25) follows from Assumption 2.1. We will check (21), (22) and (24) in a
little while. Denote the resulting ξ̃ of Lemma 4.9 by ξ̃t , 1 ≤ t ≤ T , it satisfies (26).

Good versions exist by Proposition 4.4. For t = T , (22) holds because of
Proposition 5.1 and for t < T , by

Ut−1(λx) = E
(
Ut

(
λx + 〈ξ̃t (λx),�St 〉)|Ft−1

)
≤ λγ (

E
(
Ut

(
x + 〈ξ̃t (λx)/λ,�St 〉)|Ft−1

) + C
) ≤ λγ (

Ut−1(x) + C
)
.

We get (21) in the same way. It remains to establish (24): the statement is true,
since

Ut(x) ≥ E
(
Ut+1(x)|Ft

) ≥ · · · ≥ UT (x),(27)

and the latter is deterministic. �

Now set φ∗
1 := ξ̃1(c) and define inductively

φ∗
t+1 := ξ̃t+1

(
c +

t∑
j=1

〈φ∗
j ,�Sj 〉

)
, 1 ≤ t ≤ T − 1.

Joint measurability of ξ̃t assures that φ∗ is a predictable process with respect to
the given filtration.

PROPOSITION 5.3. For any strategy φ ∈ �(U,x),

E
(
U(V

c,φ
T )|F0

) ≤ E
(
U

(
V

c,φ∗
T

)|F0
) = U0(c).(28)

PROOF. Remembering UT = U and using Proposition 4.10, we may rewrite
the right-hand side of (28) as follows:

E
(
UT

(
V

c,φ∗
T

)|F0
) = E

(
E

(
UT

(
V

c,φ∗
T −1 + 〈φ∗

T ,�ST 〉)|FT −1
)|F0

)
= E

(
UT −1

(
V

c,φ∗
T −1

)|F0
)
.
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Continuing the procedure, we finally arrive at

E
(
U

(
V

c,φ∗
T

)|F0
) = E

(
U1

(
V

c,φ∗
1

)|F0
)

(29)
= E

(
U1(c + 〈φ∗

1 ,�S1〉)|F0
) = U0(c).

We remark that all conditional expectations below exist by the definition
of �(U,x). By the definition of UT −1,

E
(
UT (V

c,φ
T )|FT −1

) = E
(
UT (V

c,φ
T −1 + 〈φT ,�ST 〉)|FT −1

) ≤ UT −1(V
c,φ
T −1).

Iterate the same argument and obtain

E
(
U(V

c,φ
T )|F0

) ≤ U0(c).(30)

Putting (29) and (30) together, one gets exactly (28). �

PROOF OF THEOREM 2.7 UNDER ASSUMPTION 2.3. Proposition 5.3 shows
that u(c) = EU0(c) and φ∗(c) is an optimal strategy. �

PROOF OF THEOREM 2.7 UNDER ASSUMPTION 2.5. Define

Ũ (x) := U(x + x̃) − U(x̃).

Assumption 2.1 holds for this new function and an optimal strategy for Ũ furnishes
one for U . Ũ (0) = 0 and if x ≤ 0, we have, by Assumption 2.5 for λ ≥ 1,

Ũ (λx) ≤ λ1+αU

(
x + x̃

λ

)
− U(x̃)

≤ λ1+αŨ

(
x −

(
1 − 1

λ

)
x̃

)
.

Let us introduce the notation

χ := −x̃ ≥ −
(

1 − 1

λ

)
x̃,

so we have

Ũ (λx) ≤ λ1+αŨ(x + χ),

for x ≤ 0. An argument similar to that of Proposition 5.1 above and Lemma 6.3
of [20] shows that, for all x ∈ R,

Ũ (λx) ≤ λ1+αŨ(x + χ),

Ũ(λx) ≤ λŨ(x + χ).

Replacing Proposition 5.1 by the two inequalities above, only minor modifications
are needed in the estimations of Lemma 4.8 and Proposition 5.2, otherwise the
proof of Theorem 2.7 goes through for Ũ . �
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PROOF OF THEOREM 2.8. If U is strictly concave, the functions Ut are easily
seen to be strictly concave too. Now unicity has to be proved by forward induction.
Let us suppose that φi ∈ �0, φi ∈ D1 a.s., i = 1,2, such that

E
(
U1(c + 〈φi,�S1〉)) = u(c)

for i = 1,2 with a given fixed c. Then for the strategy φ3 := (φ1 +φ2)/2, we obtain

EU1
(
c + 〈φ3,�S1〉) ≥ EU1(c + 〈φ1,�S1〉) + EU1(c + 〈φ2,�S1〉)

2
≥ u(c),

by concavity. By the definition of u(c), only equality is possible, hence, strict
concavity implies that, necessarily,

〈φ3,�S1〉 = 〈φ2,�S1〉 = 〈φ1,�S1〉 a.s.

But this implies that actually φ1 − φ2 ∈ D⊥
1 , which is only possible if

φ1 − φ2 = 0 a.s.,

as required. The induction step is identical, one has to apply the induction
hypothesis and consider

EUt

(
V

c,φ∗
t−1 + 〈φi,�St 〉)

for φi ∈ �t−1, φi ∈ Dt a.s., i = 1,2. The above argument shows φ1 = φ2 almost
surely. �

PROOF OF THEOREM 2.10. First suppose Assumption 2.3. Let us define

UT (x,ω) := U
(
x − B(ω)

)
,

and Ut,0 ≤ t ≤ T − 1 in a respective manner. Boundedness of B and Assump-
tion 2.1 imply (1). Furthermore, observe that if � ∈ R is such that � ≥ |B| almost
surely, then by Proposition 5.1,

UT (λx) = U(λx − B) ≤ λU(x − B/λ) + Cλγ

≤ λU(x − B + �) + Cλγ = λUT (x + �) + Cλγ

and

UT (λx) ≤ λγ UT (x + �) + Cλγ ,

for all λ ≥ 1. Hence, it is easy to see that, apart from trivial changes in the
estimations of Lemma 4.8 and Proposition 5.2, the arguments of Sections 4 and 5
go through. Under Assumption 2.5, we use

Ũ (x) := UT (x + x̃ − � − B) − UT (x̃ − � − B),

and the proof of Theorem 2.7 under this assumption (see above) gives

Ũ (λx) ≤ λ1+αŨ(x − x̃ + 2�),

Ũ (λx) ≤ λŨ(x − x̃ + 2�),

the same arguments work almost without modifications. �
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6. Utility based pricing. We are looking for equivalent martingale measures,
that is, Q ∼ P such that S is a Q-martingale, using utility considerations. This
approach has already been pursued by, for example, Davis [5], Frittelli [8] and
Hugonnier, Kramkov and Schachermayer [14], and goes back to principles of
economic theory, see [13].

Recently Schäl [29–31] have investigated this method in the discrete-time
context. A natural candidate for an equivalent martingale measure is

dQ

dP
:= U ′(V c,φ∗

T )

EU ′(V c,φ∗
T )

,(31)

where φ∗ is the optimal strategy for initial capital c.

REMARK 6.1. Unfortunately, in several cases, formula (31) fails to provide
a martingale measure, even for a “nice” U . Let us fix, for example, U(x) :=
1 − e−x, T := 1, c := 0 and let �S1 be symmetric and not integrable. Then

Ee−φ�S1 = ∞, φ ∈ R \ {0},
the optimal strategy is given by φ∗

1 := 0, the corresponding Q is P itself; but P is
certainly not a martingale measure!

THEOREM 6.2. Let us suppose that U satisfies either Assumption 2.3 or
Assumption 2.5 and that it is strictly increasing and continuously differentiable.
Furthermore, assume that S satisfies (2) and is bounded. If Assumption 2.1 is met,
then (31) defines an equivalent martingale measure.

Before proving this theorem, we need several auxiliary assertions. First notice
that, by Theorem 2.7, there is an optimal φ∗.

PROPOSITION 6.3. Let f : Rd → R a concave function. Then

|f (s)−f (s′)| ≤ |s − s′|
{∣∣∣∣f (s)−f

(
s + s′ − s

|s − s′|
)∣∣∣∣∨

∣∣∣∣f (s′)−f

(
s′ + s − s′

|s − s′|
)∣∣∣∣

}
,

for |s − s′| ≤ 1.

PROOF. We see that, for any λ ∈ [0,1],

f (s) − f (s′) = f (s) − f

(
λs + 1 − λ

1 − λ
(s′ − λs)

)
,

so concavity implies that the left-hand side is not greater than

f (s) − λf (s) − (1 − λ)f

(
s′ − λs

1 − λ

)
= (1 − λ)

(
f (s) − f

(
s′ − λs

1 − λ

))
.
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Let |s − s′| ≤ 1 and let us set λ := 1 − |s − s′|. We obtain

f (s) − f (s′) ≤ |s − s′|
(
f (s) − f

(
s + s′ − s

|s − s′|
))

.

The statement of Proposition 6.3 now follows by interchanging the roles of
s and s′. �

From now on, we use notation and assumptions of Section 4, as well as
hypotheses of Theorem 6.2. In addition, suppose that for almost all ω, V (·,ω)

is continuously differentiable, Y is bounded and

−∞ < EV (x + 〈y,Y 〉) < ∞,(32)

for all x ∈ R, y ∈ Rd .

PROPOSITION 6.4. The function

(x, y) → E
(
V (x + 〈y,Y 〉)|H)

has a version H(x, y,ω) which is continuously differentiable in (x, y) ∈ Rd+1,

∂iH(x, y,ω) = E
(
V ′(x + 〈y,Y 〉)Y i |H)

, 1 ≤ i ≤ d,

where ∂i is the derivative with respect to yi ,

∂xH(x, y,ω) = E
(
V ′(x + 〈y,Y 〉)|H)

.(33)

Furthermore, for any ξ ∈ � and any H -measurable R-valued r.v. X,

H(X, ξ,ω) = E
(
V (X + 〈ξ, Y 〉)|H)

,

∂iH(X, ξ,ω) = E
(
V ′(X + 〈ξ, Y 〉)Y i |H)

, 1 ≤ i ≤ d.

So one has also

E
(
V ′(X + 〈ξ̃ (X),Y 〉)Y i |H) = 0, 1 ≤ i ≤ d.

PROOF. We confine ourselves to the case d := 1 and x, y ∈ [0,1]. First apply
Proposition 6.3 with the choice s′ := x + yY, s := x + (y + h)Y for h ∈ R such
that |hY | ≤ 1:

|V (x + (y + h)Y ) − V (x + yY )|
|h|

≤ |Y |{∣∣V (
x + (y + h)Y

)∣∣ + |V (x + yY )|}(34)

+ |Y |{|V (x + yY + 1)| + ∣∣V (
x + (y + h)Y + 1

)∣∣}.
Condition (32) implies that the right-hand side of the above inequality is in L1.
Hence,

V ′(x + yY )Y = lim
h→0

V (x + (y + h)Y ) − V (x + hY)

h
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is also in L1, even supx,y∈[0,1] |V ′(x + yY )Y | is in L1. A similar argument works
for (33).

Now apply Lemma A.3 and obtain a continuously differentiable version of H .
Notice that the second assertion is clear for step functions X,ξ and we

may also suppose X,ξ ≥ 0. Taking arbitrary ξ ≥ 0 and increasing step-function
approximations ξn ↗ ξ , we get

∂1H(X, ξn) → ∂1H(X, ξ)

by continuity and

E
(
V ′(X + ξnY )Y |H) = E

(
V ′(X + ξnY

+)Y+|H) − E
(
V ′(X − ξnY

−)Y−|H)
→ E

(
V ′(X + ξY )Y |H)

by monotone convergence. The above reasoning for Xn ↗ X and ξ fixed
completes the argument. The analogous statement for H follows in a similar way.

In the present case, Lemma 4.9 gives a P -zero set N such that

∀x H
(
x, ξ̃ (x),ω

) = G(x,ω), ω ∈ � \ N,(35)

where G is as constructed in Proposition 4.4.
From the definition of G and by continuity of G,H ,

∀x, y H(x, y,ω) ≤ G(x,ω), ω ∈ � \ N ′,(36)

outside another zero-set N ′. Now the last assertion follows by the optimality of ξ̃ .
�

We improve on Proposition 4.4 next.

PROPOSITION 6.5. The function

x → ess sup
ξ∈�

E
(
V (x + 〈ξ, Y 〉)|H)

has a version G(x,ω) which is almost surely continuously differentiable and, for
any H -measurable R-valued random variable X,

G(X,ω) = ess sup
ξ∈�

E
(
V (X + 〈ξ, Y 〉)|H)

.

Also,

G′(X,ω) = E
(
V ′(X + 〈ξ̃ (X),Y 〉)|H)

.(37)

PROOF. Take G as given by Proposition 4.4. From Proposition 6.4,

∂sH(s, y,ω) = E
(
V ′(s + 〈y,Y 〉)|H)

.
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Now we borrow a trick from Theorem 4.13 of [30]. Outside a null set, for all x and
for any h ∈ N,

G(x ± 1/h) − G(x) ≥ H
(
x ± 1/h, ξ̃ (x)

) − H
(
x, ξ̃ (x)

)
,

see the end of the proof of Proposition 6.4. Letting h → ∞, we find that

∂xH
(
x, ξ̃ (x)

) ≥ G′(x−) ≥ G′(x+) ≥ ∂xH
(
x, ξ̃ (x)

)
,

by smoothness of H , so G is indeed smooth almost everywhere, a similiar
argument assures that one can plug X into G′. �

PROPOSITION 6.6. The functions Ut,0 ≤ t ≤ T , have continuously differen-
tiable versions which also satisfy (32). Furthermore, we have for 1 ≤ i ≤ d and for
1 ≤ t ≤ T ,

E
(
U ′

t

(
X + 〈ξ̃t (X),�St 〉)�Si

t |Ft−1
) = 0,

for any Ft−1-measurable X.

PROOF. For t = T , the first two assertions are clear as S is bounded. The
rest follows by Propositions 6.4 and 6.5 and backward induction; (32) holds true
because of (8) and Assumption 2.1. �

PROOF OF THEOREM 6.2. We need to check that, for all 0 ≤ t ≤ T − 1,

E
(
U ′(V c,φ∗

T

)|Ft

) = U ′
t

(
V

c,φ∗
t

)
.

Indeed, this follows by backward induction and (37). We also get, by an estimation
like (34), that

U ′
0(c) = E

(
U ′(V c,φ∗

T

)|F0
)

is in L1, thus, Proposition 6.6 implies that the Q defined by (31) is an absolutely
continuous martingale measure. As U is strictly increasing and concave, U ′ never
vanishes, so Q is equivalent to P . �

7. Ramifications. We would like to check that Theorems 2.7 and 6.2 hold in
concrete, nontrivial classes of models. Let M denote the set of random variables
with finite moments of all orders.

PROPOSITION 7.1. Let us suppose Assumption 2.3 (or Assumption 2.5),

M|x|−l ≤ U ′(x) ≤ K(|x|k + 1)(38)

for some k, l,M,K ≥ 0; and that U is continuously differentiable and strictly
increasing. Furthermore, assume that for all 0 ≤ t ≤ T , we have |�St | ∈ M
and (NA) holds such that βt , κt of Proposition 3.3 satisfy 1/βt ,1/κt ∈ M for
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0 ≤ t ≤ T − 1 (this applies, in particular, when κt = κ,βt = β deterministic
constants, e.g., when S has independent increments).

Then Assumption 2.1 holds; for every initial endowment c, there exists a strategy
φ∗(c) such that

u(c) = EU
(
V

c,φ∗
T

)
< ∞,

and (31) defines an equivalent martingale measure.

PROOF. We shall check that the arguments in the proofs of Theorems
2.7 and 6.2 work. The main point consists in establishing a more “quantitative”
version of Lemma 4.8. Suppose Assumption 2.3, the case of Assumption 2.5 is
analogous.

We shall show by backward induction that, for all 0 ≤ t ≤ T and x ∈ R,

Ut(x) ≤ E
(
U

(
x + (1 + |x|ζt )ρt

)|Ft

)
,(39)

Ut(x) < ∞ a.s.(40)

∃ ξ̃t+1(x) ∈ �t Ut(x) = E
(
Ut+1

(
x + 〈ξ̃t+1(x),�St+1〉)|Ft

)
,(41)

|ξ̃t+1(x)| ≤ (1 + |x|αt )ψt ,(42)

Ut is continuously differentiable,(43)

U ′
t (x) = E

(
U ′

t+1

(
x + 〈ξ̃t+1(x),�St+1〉)|Ft

)
,(44)

where ζt , αt > 0 constants, ρt ,ψt ∈ M.
Suppose that the above statements are true for t +1 and proceed by the induction

step (the case t = T is trivial). Estimations of Lemma 4.8 [(14), (15), (17) and (18),
in particular] show that, for any φ ∈ �t,φ ∈ Dt+1, |φ| ≥ 1,

E
(
Ut+1(x + 〈φ,�St+1〉)|Ft

) ≤ |φ|γ L(x) + 2C|φ|γ − |φ|(1+γ )/2κt/2,

whenever

ess inf
q∈�̃t

P
(
Ut+1

(|x| − |φ|(1−γ )/2βt

)
< −1, 〈q,�St+1〉 < −βt |Ft

) ≥ κt/2,(45)

and L(x) is defined as

L(x) := ∑
i∈W

E
(
U+

t+1(x + 〈θi,�St+1〉)|Ft

)
.

Estimating L(x) from above by (39) as

L(x) ≤ 2dE
(
U+(|x| + [

1 + (|x| + √
d|�St+1|)ζt+1

]
ρt+1

)|Ft

)
≤ 2dU ′(0)E

(|x| + [
1 + (|x| + √

d|�St+1|)ζt+1
]
ρt+1

)|Ft

)
,
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we conclude that L(x) ≤ (1 + |x|w)J , where w > 0, J ∈ M. Turning our attention
to (45), let us use concavity, the induction hypotheses, (39), (42) and (44), while
supposing |φ|(1−γ )/2βt ≥ |x|:

Ut+1
(|x| − |φ|(1−γ )/2βt

)
≤ Ut+1(0) − U ′

t+1(0)
(|φ|(1−γ )/2βt − |x|)

≤ E
(
U(ρt+1)|Ft+1

) − E
(
U ′(�)|Ft+1

)(|φ|(1−γ )/2βt − |x|),
where � ∈ M. Define N1,N2 ∈ M by

N1 := 4E(�|Ft )

κt

, N2 := 4E(U(ρt+1)|Ft )

κt

.

The Markov inequality then assures

P
(
� ≤ N1,E

(
U(ρt+1)|Ft+1

) ≤ N2|Ft

) ≥ 1 − κt/2.

Hence, by (6) and the above considerations,

ess inf
q∈�̃t

P
(
Ut+1

(|x| − |φ|(1−γ )/2βt

)
< −1, 〈q,�St 〉 < −βt |Ft

)

≥ ess inf
q∈�̃t

P
(
U ′(N1)

(
βt |φ|(1−γ )/2 − |x|) > 1 + N2,

E
(
U(ρt+1)|Ft+1

) ≤ N2,� ≤ N1, 〈q,�St 〉 < −βt |Ft

)
≥ κt/2,

provided that

|φ| ≥
[(

1 + N2

U ′(N1)
+ |x|

)/
βt

]2/(1−γ )

.(46)

Note that, due to (38), condition (46) is met as soon as |φ| ≥ (1 + |x|s)� for
some s > 0,� ∈ M.

Choose φ so large as to have

|φ|γ L + 2C|φ|γ − |φ|(1+γ )/2κt/2

< − K

k + 1
E

([|x| + (1 + |x|ζt+1)ρt+1]k+1|Ft

) ≤ E
(
Ut+1(x)|Ft

)
,

where we used (39) and (38) in the second inequality. Again, by the bound on
L(x), this gives a condition on |φ| which is polynomial in x and involves terms
in M, that is, the essential supremum Ut is attained by portfolios satisfying (42)
for appropriate αt ,ψt given by the tedious estimations above. Now it follows that
if φ satisfies the bound (42) then for suitable ζt > 0, ρt ∈ M,

E
(
Ut+1(x + 〈φ,�St 〉)|Ft

)
≤ E

(
U

(
x + (1 + [|x| + |φ||�St |]ζt+1)ρt+1

)|Ft

)
≤ E

(
U

(
x + (1 + |x|ζt )ρt

)|Ft

) ≤ U ′(0)E
(|x| + (1 + |x|ζt )ρt |Ft

)
,
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which shows (40), as well as (39), and the arguments of Section 4 provide an
optimal ξ̃t+1(x) which satisfies (42). Skipping through arguments of Section 6
(Proposition 6.4), it becomes clear that for establishing the differentiability of Ut ,
one needs the integrability of something like

sup
x,y∈[a,b]

U ′
t+1(x + y�St+1)|�St+1|.

(We have switched to dimension 1 and x, y ∈ [a, b] without loss of generality.)
The above quantity is smaller than

|�St+1|U ′(−p(|�St+1|X)
) ≤ ∣∣1 + |�St+1| + X

∣∣r ,
where p(x) ≥ 0 is a polynomial of x; r > 0 and X ∈ M [see (44), (42) and (38)],
and this is indeed integrable. So the arguments of Section 6 apply, (43) and (44)
follow. Finally, EU0(c) < ∞ is deduced from (39); the existence of φ∗(c) and Q

follow just like in Sections 5 and 6. �

NOTE ADDED IN PROOF. With a different argument it is posible to get rid of
the left-hand side inequality in (38).

REMARK 7.2. Analogous arguments show that if S is bounded, (NA) holds
with κt = κ,βt = β deterministic constants in Proposition 3.3 and either one of
Assumptions 2.3, 2.5 holds, then Assumption 2.1 is true and there exists a bounded
optimal strategy φ∗.

We now demonstrate that, even under (NA), the expected utility maximization
problem does not necessarily admit an optimal portfolio.

EXAMPLE 7.3. Define a strictly increasing concave function U by setting

U(0) = 0,

U ′(x) := 1 + 1/n2, x ∈ (n − 1, n], n ≥ 1,

U ′(x) := 3 − 1/n2, x ∈ (n,n + 1], n ≤ −1.

Take

S0 := 0, P (S1 = 1) = 3/4, P (S1 = −1) = 1/4.

One can calculate the expected utility of the strategy φ1 := n,n ∈ Z with initial
capital c = 0:

EU(nS1) = 3U(n) + U(−n)

4

= 1

4

(
3n + 3

n∑
j=1

1/j2 − 3n +
n∑

j=1

1/j2

)
=

n∑
j=1

1/j2, n ≥ 0;
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and

EU(nS1) = 1
4

(
9n + 3

−n∑
j=1

1/j2 − n +
−n∑
j=1

1/j2

)
=

−n∑
j=1

1/j2 + 2n, n < 0.

This utility tends to
∞∑
i=1

1/i2 = π2/6

in an increasing way as n → ∞. In fact, it is easy to see that the function

φ1 → EU(φ1S1), φ1 ∈ R

is increasing in φ1, so we may conclude that the supremum of the expected utilities
is π2/6, but it is not attained by any strategy φ1. It is clear that one can construct a
similar example with U ′ continuous and U strictly concave. It would be interesting
to find the minimal conditions on U which assure the existence of an optimal
portfolio under (NA) and Assumption 2.1.

REMARK 7.4. In Section 6 we have proven for bounded S a certain
“individual” version of the fundamental theorem of asset pricing: absence of
arbitrage implies that an agent of subjective utility U finds an equivalent
martingale measure computed from his or her optimal investment strategy. In the
light of Proposition 7.1, we might relax the assumption on S. An interesting special
case is when U(x) := x, x ≤ 0 and otherwise U and S satisfy the assumptions of
Proposition 7.1. Then we get a martingale measure with dQ/dP bounded [due to
the fact that U ′(x) ≤ 1]. That is, in this particular model class we have reproved
the result of Dalang, Morton and Willinger [4].

REMARK 7.5. Using Proposition 7.1 with a suitable U such that U(x) = x,
x ≥ 0, one obtains a martingale measure Q ∼ P such that dQ/dP ≥ h for some
constant h > 0. This result seems to be new and did not follow from the generic
functional analytic approach to the construction of martingale measures (i.e.,
separation theorems). Note that, just like in Remark 7.4, we rely on the fact that a
larger class of utility functions is allowed, see Remark 2.9.

REMARK 7.6. We finally note that an optimal strategy exists under conic
portfolio constraints too. Let C be a fixed polyhedral cone in Rd . If we admit
only strategies satisfying φt ∈ C for all t and define (NA), �, and so on in the
respective manner, Theorem 2.7 remains true. Modification is required only in the
Fatou lemma arguments of Lemmas 4.8 and 4.9. The choice C := Rd+ corresponds
to forbidden short sales. In this case, the argument of Theorem 6.2 provides a
measure Q ∼ P such that S is a Q-supermartingale. The fact that (NA) under short
sales constraints is equivalent to the existence of an equivalent supermartingale-
measure was first noticed in [16], see also [2, 22, 24].
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APPENDIX

Let H ⊂ F be a σ -algebra containing P -zero sets. An H -measurable random
set D is an element of H ⊗ B(Rd), where B(Rd) denotes the Borel sets of Rd .
A random affine subspace D is H -measurable random set such that D(ω) is an
affine subspace of Rd for each ω.

Let Y be a d-dimensional random variable and µ(·,ω) := P(Y ∈ ·|H) a regular
version of its conditional distribution. Let D(ω) be the smallest affine subspace
of Rd containing the support of µ(·,ω).

PROPOSITION A.1. D is an H -measurable random affine subspace.

PROOF. This is only a sketch. We begin by showing that suppµ(·,ω) or,
equivalently, its complement suppC µ(·,ω) is a random set. Let G be a countable
base for the topology of Rd . Then

suppC µ(·,ω) := ⋃{G ∈ G :µ(G,ω) = 0},
which proves the assertion. Actually, Z(ω) := conv(suppµ(·,ω)) is a random
set, where conv(·) denotes closed convex hull. This is based on the existence
of a sequence of random variables that is dense in the random set suppµ(·, ·),
which is provided by Theorem III. 22 on page 74 of [3]. Now a simple argument
(Theorem III.40 on page 87 of [3]) shows that the closed convex hull is, indeed,
a random set.

Take a measurable selector ν(ω) of Z(ω). Then the random set Z−Z contains 0
in its relative interior, [ ⋃

n∈N

{nz : z ∈ Z − Z}
]

+ ν(ω)

clearly equals D(ω), which proves the proposition. �

LEMMA A.2. Let ηn : R × � → Rd be a sequence of B(R) ⊗ H -measurable
functions such that for almost all ω,

∀x lim inf
n→∞ |ηn(x,ω)| < ∞.

Then there is a sequence nk of B(R) ⊗ H -measurable N-valued functions, nk <

nk+1, k ∈ N such that almost surely η̃k(x,ω) := ηnk
(x,ω) converges for all x to

some η̃(x,ω) as k → ∞. To put it more concisely, there is a convergent random
subsequence.

PROOF. This is just a variant of Lemma 2 in [17]. �
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LEMMA A.3. Let C(z,ω), z ∈ [0,1]2 be continuously differentiable for
almost all ω and measurable for any fixed z such that E supz∈[0,1]2 |C(z,ω)| < ∞
and E[supz |∂1C(z,ω)| + supz |∂2C(z,ω)|] < ∞. Then there is a version H(z,ω)

of

z → E
(
C(z,ω)|H)

,

which is almost surely a continuously differentiable function.

PROOF. Regard C as a random element of the Banach space C1([0,1]2) of
continuously differentiable functions equipped with the norm

‖f ‖ := sup
z∈[0,1]2

|f (z)| + sup
z∈[0,1]2

|∂1f (z)| + sup
z∈[0,1]2

|∂2f (z)|,

and the corresponding Borel-field. It is easy to see that C is measurable in this
sense. Then the assertion follows from Proposition V-2-5 of [23]. �
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